【车辆检测】yolo v2车辆检测识别【含Matlab源码 581期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
优快云 Matlab武动乾坤—代码获取方式

更多Matlab图像处理仿真内容点击👇
Matlab图像处理(进阶版)

⛳️关注优快云 Matlab武动乾坤,更多资源等你来!!

⛄一、简介

1 前言
Okay……最近事情比较多,博客也发的少,所以决定搞一次大新闻。本此的博客详细记录了我使用Matlab进行车辆区域检测(R-CNN)与车型识别(AlexNet)的过程。并且内包含了训练数据集、测试数据集以及源码。
训练数据集是使用的斯坦福大学的一个车型数据库,内含196种不同的车型。写到这里我真的很想吐槽一下这个数据库里面的奥迪车系:很多黑白的图片啊喂!!! 做训练的时候AlexNet数据输入维度是3啊喂!!!害的我自己找了很多图片啊!!!….

2 环境
测试环境:
硬件:
Intel i5-4590
GTX 980
软件:
Matlab R2016b(只有这个版本才实现了RCNN…)

3 数据集的下载
嗯。一上来就发福利:
原始数据集,内含train/test:http://pan.baidu.com/s/1miTn9jy
我规整后的数据集,将图片变换为227*227,并且对少量黑白图片进行了替换:http://pan.baidu.com/s/1pKIbQiB
接下来的这个是每一张图片所对应的车型标注文件:http://pan.baidu.com/s/1nuOR7PR

在Matlab中下载AlexNet
AlexNet是2012年ImageNet大赛的冠军。它一共有8层,其中了5个卷积层,2层全连接和一层分类,如果使用其对一张图片进行前向传播,那么最后输出的这张图片属于1000种物体中哪一个的概率。
我这里对AlexNet在Matlab中进行了定义,这是我的代码和网络结构:

⛄二、部分源代码

clear
clc

doTraining = true; % 是否进行训练

% 解压数据
% data = load(‘./data/carDatasetGroundTruth.mat’);
% vehicleDataset = data.carDataset; % table型,包含文件路径和groundTruth
data = load(‘./data/vehicleDatasetGroundTruth.mat’);
vehicleDataset = data.vehicleDataset; % table型,包含文件路径和groundTruth

% 添加绝对路径至vehicleDataset中
vehicleDataset.imageFilename = fullfile([pwd, ‘/data/’],vehicleDataset.imageFilename);

% 显示数据集中的一个图像,以了解它包含的图像的类型。
vehicleDataset(1:4,:) % 显示部分数据情况

% 将数据集分成两部分:一个是用于训练检测器的训练集,一个是用于评估检测器的测试集。
% 选择 70% 的数据进行训练,其余数据用于评估。
rng(0); % 控制随机数生成
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.7 * length(shuffledIndices) );
trainingDataTbl = vehicleDataset(shuffledIndices(1:idx)😅;
testDataTbl = vehicleDataset(shuffledIndices(idx+1:end)😅;

% 保存数据和标签
imdsTrain = imageDatastore(trainingDataTbl{:,‘imageFilename’}); % 路径
bldsTrain = boxLabelDatastore(trainingDataTbl(:,‘vehicle’)); % 真实框和类别

imdsTest = imageDatastore(testDataTbl{:,‘imageFilename’});
bldsTest = boxLabelDatastore(testDataTbl(:,‘vehicle’));

% 整理训练测试集
trainingData = combine(imdsTrain,bldsTrain); % 联合文件路径和真实框
testData = combine(imdsTest,bldsTest);

% 显示数据
data = read(trainingData); % data包括图片数据、真实框坐标、类别
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,‘Rectangle’,bbox); % 在数据矩阵中标出真实框
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage) % 显示图像

% 创建yolo网络
inputSize = [224 224 3];
numClasses = width(vehicleDataset)-1; % 通过table的列数计算类别数

% 用于评估锚框个数
trainingDataForEstimation = transform(trainingData,@(data)preprocessData(data,inputSize));
numAnchors = 7;
[anchorBoxes, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation, numAnchors)

% 特征提取层采用resnet50
featureExtractionNetwork = resnet50;

featureLayer = ‘activation_40_relu’;

% 设置yolo网络
lgraph = yolov2Layers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLayer);

% 进行数据增强
augmentedTrainingData = transform(trainingData,@augmentData);

% 可视化增强后的图片
augmentedData = cell(4,1);
for k = 1:4
data = read(augmentedTrainingData);
augmentedData{k} = insertShape(data{1},‘Rectangle’,data{2});
reset(augmentedTrainingData);
end
figure
montage(augmentedData,‘BorderSize’,10)

% 对增强数据进行预处理
preprocessedTrainingData = transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));

data = read(preprocessedTrainingData);

% 显示一下
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,‘Rectangle’,bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

% 训练参数
options = trainingOptions(‘sgdm’, …
‘MiniBatchSize’, 16, …
‘InitialLearnRate’,1e-3, …
‘MaxEpochs’,20,…
‘CheckpointPath’, tempdir, …
‘Shuffle’,‘never’);

if doTraining
% 训练YOLOv2检测器
[detector,info] = trainYOLOv2ObjectDetector(preprocessedTrainingData,lgraph,options);
else
% 载入预训练模型
pretrained = load(‘yolov2_mytrain.mat’);
detector = pretrained.detector;
end

% 测试训练好的模型并显示
I = imread(testDataTbl.imageFilename{4});
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

I = insertObjectAnnotation(I,‘rectangle’,bboxes,scores);
figure
imshow(I)

% 预处理测试集
preprocessedTestData = transform(testData,@(data)preprocessData(data,inputSize));
% 对测试集数据进行测试
detectionResults = detect(detector, preprocessedTestData);
% 评估准确率
[ap,recall,precision] = evaluateDetectionPrecision(detectionResults, preprocessedTestData);

figure
plot(recall,precision)
xlabel(‘Recall’)
ylabel(‘Precision’)
grid on
title(sprintf(‘Average Precision = %.2f’,ap))

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]黎洲,黄妙华.基于YOLO_v2模型的车辆实时检测[J].中国机械工程. 2018,29(15)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

### 回答1: 基于YOLO(v2)深度学习的车辆检测识别MATLAB源码是使用MATLAB编程语言实现的,目的是通过训练深度神经网络实现对车辆的自动检测识别YOLO(v2)是一种目标检测算法,其全称为You Only Look Once,可以实时地从图像中检测多个目标。在车辆检测识别任务中,YOLO(v2)通过划分图像为多个网格单元,并根据每个单元内的特征预测出车辆的边界框、类别和置信度。 MATLAB源码的实现过程主要包括以下几个步骤: 1. 数据准备:收集和准备用于训练的车辆图像和对应的标签数据。标签数据包括车辆边界框的位置和类别信息。 2. 网络设计:设计一个基于YOLO(v2)网络结构的深度神经网络。该网络包括卷积层、池化层、全连接层、激活函数等。 3. 权重初始化:使用预训练的权重对网络进行初始化,以加快网络的训练速度和提高准确度。 4. 数据增强:对训练数据进行随机平移、旋转、缩放等增强操作,增加训练样本的多样性和数量。 5. 损失函数定义:定义用于训练的损失函数,包括边界框定位损失、类别预测损失和置信度损失。 6. 训练网络:使用训练数据对网络进行训练,并根据损失函数对网络参数进行更新。 7. 测试与评估:使用测试数据对网络进行评估,计算检测识别的准确率、召回率和F1分数等指标。 8. 模型应用:将训练好的模型应用于新的图像,实现车辆检测识别。可以通过调整置信度的阈值来控制检测的精度和召回率。 基于YOLO(v2)深度学习的车辆检测识别MATLAB源码可以通过搜索相关资源或参考开源项目获得,也可以根据以上步骤进行自行实现。在使用源码时,需要注意安装相应的深度学习库,如MATLAB的Deep Learning Toolbox,以及确保计算机具备足够的计算资源和显卡支持。 ### 回答2YOLO v2是一种基于深度学习的目标检测算法,能够在图像中实时地检测识别多个目标。通过使用YOLO v2算法,我们可以编写MATLAB源码来实现车辆检测识别。 首先,在MATLAB中导入YOLO v2的深度学习模型,并将其加载到工作空间中。然后,我们需要准备一些车辆图像数据集,并将其分为训练集和测试集。接下来,我们使用数据集对模型进行训练,以便让模型能够学习和识别车辆。 在模型训练完成后,我们可以使用训练好的模型来进行车辆检测识别。首先,我们将一张待检测的图像输入到模型中,模型将输出图像中所有检测到的目标的位置和类别。然后,我们可以根据输出的结果在图像上绘制边界框和类别标签,以便更直观地观察识别结果。 在编写源码时,我们需要考虑一些细节。首先,我们需要设置模型的超参数,如输入图像的尺寸、训练的迭代次数等。其次,我们需要编写代码来导入和预处理图像数据集,并将其分为训练集和测试集。然后,我们需要定义模型的结构和损失函数,并选择合适的优化算法来训练模型。最后,我们可以编写代码来加载训练好的模型,并将其应用于新的图像数据集。 总之,基于YOLO v2的深度学习检测识别车辆MATLAB源码可以实现车辆的实时检测识别。通过编写源码,我们可以导入和训练YOLO v2模型,并使用训练好的模型来对车辆图像进行检测识别。这样,我们可以方便地应用该算法于车辆相关应用中。 ### 回答3: YOLO v2(You Only Look Once v2)是一种深度学习模型,用于车辆检测识别。其主要特点是快速和准确,能够实时识别图像中的车辆。 基于YOLO v2车辆检测识别MATLAB源码主要包括以下步骤: 1. 数据集准备:收集并整理包车辆的图像数据集,同时制作标签信息,标注车辆的位置和类别。 2. 数据预处理:对图像进行预处理,如调整大小、翻转、旋转等操作,以提高模型对不同尺度和变化的适应能力。 3. 模型训练:使用YOLO v2的网络架构和深度学习框架(如MATLAB中的Deep Learning Toolbox)进行模型训练。训练过程包括输入前向传播和后向传播,通过优化算法(如梯度下降)调整模型参数,使其逐渐收敛到最佳状态。 4. 模型评估:使用评估数据集对训练好的模型进行评估,计算检测识别的准确率、召回率和F1值等指标,以评估模型的性能。 5. 结果可视化:将模型在测试图像上的检测识别结果进行可视化展示,用不同的边界框和类别标签标识出检测到的车辆。 除了以上步骤,还有一些细节需要注意,如数据集的平衡性、模型的超参数调优、数据增强等。此外,为了提高模型的性能和泛化能力,还可以考虑使用预训练的权重参数、引入多尺度检测和注意力机制等技巧。 总结起来,基于YOLO v2的深度学习检测识别车辆MATLAB源码主要包括数据准备、数据预处理、模型训练、模型评估和结果可视化等步骤,通过优化模型参数和技巧,提高检测识别的准确率和实时性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值