💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
优快云 Matlab武动乾坤—代码获取方式
更多Matlab图像处理仿真内容点击👇
①Matlab图像处理(进阶版)
⛳️关注优快云 Matlab武动乾坤,更多资源等你来!!
⛄一、机器视觉识别简介
颜色是物体表面的固有特征, 在目标识别和图像分割中有着无法替代的作用。机器视觉是利用光电成像系统和图像处理模块对物体进行尺寸、形状、颜色等的识别。这样, 就把计算机的快速性、可重复性, 与人眼视觉的高度智能化和抽象能力相结合, 用机器代替人眼来作各种测量和判断, 大大提高了生产的柔性和自动化程度。图像处理中最适合显示系统的颜色空间是RGB颜色空间, 但其R、G、B3个分量高度相关, 阈值选择困难, 本文提出了一种稳定颜色空间的图像分割和识别方法, 并应用于自动生产线, 取得良好效果。
1 系统结构
机器视觉系统结构如图1所示。
机器视觉系统中, 从获得图像数据到最后获得处理结果, 通常要经过很多种算法。同时, 不同目的的机器视觉系统要求对图像作的运算也大为不同。机器视觉系统的输入是图像, 而最后的输出则是一些符号或者数值, 这些符号或数值, 有可能表达了物体的特性 (正品/次品, 阿拉伯数字等) 和位置 (集成电路引脚的位置等等) 。
2.1 图像平滑
采集的图像常有噪声干扰, 图像平滑处理有利于改善图像质量[, 本文采用自适应中值滤波算法。设Sx, y表示中心点 (x, y) 在给定时间的掩模窗口。设Zmin为Sx, y中灰度级最值;Zmed为Sx, y中灰度级中值;Zmax为Sx, y中灰度级最大值;Zx, y为像素 (x, y) 的灰度级;Smax为Sx, y允许最大的尺寸。自适应中值滤波器算法为:
A层算法
如果A1>0&A2>0转到B层。否则, 增大窗口尺寸。
如果窗口尺寸≤Smax重复A层。否则输出Zx, y。
B层算法
如果A1>0&A2>0, 输出Zx, y。否则输出Zmed。
2.2 颜色模型转换
装置采集的图像为RGB模型, 为避免计算机对图像进行处理时因三个量相互影响产生色差或者颜色失真而导致系统误判, 需要转换为HSI模型, 本文采用几何推导法进行RGB-HSI转换, 将RGB中的亮度因素进行圆柱极坐标的双椎体转换, 将三维变为二维, 在平面中求出HSI模型的色调分量值。
转换公式如下:
其中:H定义颜色的波长, 称为色调;S表示颜色的深浅程度, 称为饱和度;I表示强度或亮度。
2.3 物体识别
阈值彩色图像分割
生产线机器视觉系统中拍摄的物体受光照、噪声等环境影响, 采集到的物体图像颜色会与实际颜色存在差异, 物体之间也会存在一定颜色的差异, 同一个物体不同部分也可能存在颜色差异, 要准确识别物体, 需要通过图像分割来判断相邻区域颜色的相似度[7]。阈值法图像分割需要选取合适的阈值, 将计算机获取的经过颜色模型变换的图像色彩特征与设定的阈值进行比较, 以区分工件和背景。
f (x, y) 为计算机采集的图像色彩特征;T为设定的阈值。如果将图像二值化, 则b0为0, b1为1。这种方法对被识别物体为单一颜色时较适合。
⛄二、部分源代码
function varargout = cancer(varargin)
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @cancer_OpeningFcn, …
‘gui_OutputFcn’, @cancer_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
function cancer_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
function varargout = cancer_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;
function pushbutton1_Callback(hObject, eventdata, handles)
global I
clc
[filename, pathname] = uigetfile(‘*.jpg’, ‘Pick an Image’);
if isequal(filename,0) | isequal(pathname,0)
warndlg(‘File is not selected’);
else
I=imread(filename);
axes(handles.axes1)
imshow(I);
title ‘Input Image’
end
title ‘输入肺图像’
function pushbutton2_Callback(hObject, eventdata, handles)
global I
t=rgb2gray(I);
he=histeq(t);
axes(handles.axes2);
imshow(he);
title ‘直方图均衡’
function pushbutton3_Callback(hObject, eventdata, handles)
global I
t=rgb2gray(I);
he=histeq(t);
threshold = graythresh(he);
bw = im2bw(he,threshold);
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合