【疾病分类】模糊逻辑分类叶病严重程度分级系统【含GUI Matlab源码 194期】

本文介绍了使用Matlab实现的叶疾病分级系统,涉及模糊逻辑的应用、源代码片段以及图像处理、神经网络预测和车间调度等技术。作者分享了LeafDiseaseGradingSystemGUI的部分功能,如选择图像、图像分割和模糊逻辑评估疾病等级。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
优快云 Matlab武动乾坤—代码获取方式

更多Matlab图像处理仿真内容点击👇
Matlab图像处理(进阶版)

⛳️关注优快云 Matlab武动乾坤,更多资源等你来!!

⛄一、模糊逻辑(Fuzzy Logic)简介

理论知识参考:模糊逻辑(Fuzzy Logic)

⛄二、部分源代码

function varargout = LeafDiseaseGradingSystemGUI(varargin)
% LeafDiseaseGradingSystemGUI MATLAB code for LeafDiseaseGradingSystemGUI.fig
% LeafDiseaseGradingSystemGUI, by itself, creates a new LeafDiseaseGradingSystemGUI or raises the existing
% singleton*.
%
% H = LeafDiseaseGradingSystemGUI returns the handle to a new LeafDiseaseGradingSystemGUI or the handle to
% the existing singleton*.
%
% LeafDiseaseGradingSystemGUI(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in LeafDiseaseGradingSystemGUI.M with the given input arguments.
%
% LeafDiseaseGradingSystemGUI(‘Property’,‘Value’,…) creates a new LeafDiseaseGradingSystemGUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the LeafDiseaseGradingSystemGUI before LeafDiseaseGradingSystemGUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to LeafDiseaseGradingSystemGUI_OpeningFcn via varargin.
%
% *See LeafDiseaseGradingSystemGUI Options on GUIDE’s Tools menu. Choose “LeafDiseaseGradingSystemGUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help LeafDiseaseGradingSystemGUI

% Last Modified by GUIDE v2.5 20-Jan-2015 14:49:28

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @LeafDiseaseGradingSystemGUI_OpeningFcn, …
‘gui_OutputFcn’, @LeafDiseaseGradingSystemGUI_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% — Executes just before LeafDiseaseGradingSystemGUI is made visible.
function LeafDiseaseGradingSystemGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to LeafDiseaseGradingSystemGUI (see VARARGIN)
set(gcf, ‘units’,‘normalized’,‘outerposition’,[0 0 1 1]);

Disease_Grading = readfis(‘Disease_Grading.fis’);

handles.Disease_Grading = Disease_Grading;
guidata(hObject,handles);

% Choose default command line output for LeafDiseaseGradingSystemGUI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes LeafDiseaseGradingSystemGUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = LeafDiseaseGradingSystemGUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% — Executes on button press in select_image.
function select_image_Callback(hObject, eventdata, handles)
% hObject handle to select_image (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

   [File_Name, Path_Name] = uigetfile('PATHNAME');
   I = imread([Path_Name,File_Name]);
   imshow([Path_Name,File_Name], 'Parent', handles.axes1); title('Original Leaf Image', 'Parent', handles.axes1);
   
   %# store queryname, version 1
   handles.I = I;
   guidata(hObject,handles);

% — Executes on button press in segmentation.
function segmentation_Callback(hObject, eventdata, handles)
% hObject handle to segmentation (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

I = handles.I;

% Creating color transformation from sRGB to Lab %
cform = makecform(‘srgb2lab’);

lab_I = applycform(I,cform);

ab = double(lab_I(:,:,2:3));

nrows = size(ab,1);
ncols = size(ab,2);

ab = reshape(ab,nrows*ncols,2);
% No of clusters to be created with five iterations %
nColors =5;
[cluster_idx cluster_center] = kmeans(ab,nColors,‘EmptyAction’,‘singleton’,‘distance’,‘sqEuclidean’,‘start’,[128,128;128,128;128,128;128,128;128,128]);

pixel_labels = reshape(cluster_idx,nrows,ncols);

segmented_images = cell(5);

rgb_label = repmat(pixel_labels,[1 1 3]);

for k = 1:nColors
color = I;
color(rgb_label ~= k) = 0;
segmented_images{k} = color;
end

% displaying different show_clusters objects %

I_cluster_1 = segmented_images{1};

I_cluster_2 = segmented_images{2};

I_cluster_3 = segmented_images{3};

I_cluster_4 = segmented_images{4};

I_cluster_5 = segmented_images{5};

imshow(I_cluster_1,‘Parent’, handles.axes2); title(‘Cluster 1’);

handles.I_cluster_1 = I_cluster_1;
handles.I_cluster_2 = I_cluster_2;
handles.I_cluster_3 = I_cluster_3;
handles.I_cluster_4 = I_cluster_4;
handles.I_cluster_5 = I_cluster_5;

guidata(hObject,handles);

% — Executes on button press in disease_grade.
function disease_grade_Callback(hObject, eventdata, handles)
% hObject handle to disease_grade (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Disease_Grading = handles.Disease_Grading;

white_pixels_I = handles.white_pixels_I ;

white_pixels_I_selected = handles.white_pixels_I_selected ;

percentage_infected = (white_pixels_I_selected/white_pixels_I)*100;

grade = evalfis(percentage_infected,Disease_Grading);

figure();

plot(percentage_infected,grade,‘g*’);

legend(‘Percent - Grade of Disease’);

title(‘Disease Grade Classification Using Fuzzy Logic’);
xlabel(‘Percentage’);
ylabel(‘Disease Grade’);

% — Executes on button press in binary_original.
function binary_original_Callback(hObject, eventdata, handles)
% hObject handle to binary_original (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

I = handles.I;

BW_I = im2bw(I,0.17);

white_pixels_I = sum(BW_I(😃 == 1);

se = strel(‘disk’,1);

closeBW = imclose(BW_I,se);

imshow(closeBW,‘Parent’, handles.axes2); title(‘Binary of Original Image’);

handles.white_pixels_I = white_pixels_I;

guidata(hObject,handles);

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]张会孔,杨振霞,陈振东,刘汉舒.玉米粗缩病严重度分级标准的研究[J].植保技术与推广. 1998,(05)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值