💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀

🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
优快云 Matlab武动乾坤—代码获取方式
更多Matlab图像处理仿真内容点击👇
①Matlab图像处理(进阶版)
⛳️关注优快云 Matlab武动乾坤,更多资源等你来!!
⛄一、学习字典方法FastICA彩色图像修复
1 前言
在实际应用中,我们的图像常常会被噪声腐蚀,这些噪声或是镜头上的灰尘或水滴,或是旧照片的划痕,或者是图像遭到人为的涂画(比如马赛克)或者图像的部分本身已经损坏。
2 图像修复技术的原理
简而言之,就是利用那些已经被破坏的区域的边缘, 即边缘的颜色和结构,根据这些图像留下的信息去推断被破坏的信息区的信息内容,然后对破坏区进行填补 ,以达到图像修补的目的。
第一个参数src,输入的单通道或三通道图像;
第二个参数inpaintMask,图像的掩码,单通道图像,大小跟原图像一致,inpaintMask图像上除了需要修复的部分之外其他部分的像素值全部为0;
第三个参数dst,输出的经过修复的图像;
第四个参数inpaintRadius,修复算法取的邻域半径,用于计算当前像素点的差值;
第五个参数flags,修复算法,有两种:INPAINT_NS 和I NPAINT_TELEA;
3 学习字典方法FastICA彩色图像修复步骤
FastICA是一种独立成分分析算法,可以用于信号处理、图像处理等领域。在彩色图像修复中,FastICA可以用于分离混合图像中的独立成分,从而实现图像修复的目的。具体步骤如下:
(1)读取混合图像并将其转换为矩阵形式。
(2)对矩阵进行预处理,例如中心化、白化等。
(3)利用FastICA算法对矩阵进行分解,得到独立成分矩阵。
(4)根据独立成分矩阵和混合矩阵,重构原始图像。
⛄二、部分源代码
% Color image inpainting
clear
% close all
% Load an image
S = imread(‘images\test\castle.jpg’);
% Patch size
p = 8;
q = 8;
T = p*q;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Load the dictionary
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load dict\ICA_dict
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ALGORITHM for sparse recovery
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
alg = ‘robustsl0’;
[m n ~] = size(S);
N = m * n;
% Maximal overlap - slow but gives the best results
overlap = p-1;
aux_cols = q - overlap;
aux_rows = p - overlap;
nr1 = round(floor((m-p)/aux_rows));
nr2 = round(floor((n-q)/aux_cols));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Generate mask
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Inpainting
% ratio = 0.2;
% pom = floor(ratio*N);
% restr_ind = randperm(N);
% restr = restr_ind(1:pom)‘;
% restr_left = restr_ind(pom+1:end)’;
%
% Pmat = false(N, 1);
% Pmat(restr) = true;
% Pmat = reshape(Pmat, [m n]);
% % Simply replicate missing pixels distribution across channels
% Pmat = repmat(Pmat, [1 1 3]);
% Ratio of available pixels
ratio = 0.2;
pom = floor(ratio3N);
restr_ind = randperm(3*N);
restr = restr_ind(1:pom)‘;
restr_left = restr_ind(pom+1:end)’;
Pmat = false(3*N, 1);
Pmat(restr) = true;
Pmat = reshape(Pmat, [m n 3]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Downsampling matrix (the special case of random subsampling)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% s_fact = 3;
% odd_ind_i = (mod(0:m-1, s_fact) == 0);
% odd_ind_j = (mod(0:n-1, s_fact) == 0);
% Pmat = false(m, n);
% Pmat(odd_ind_i, odd_ind_j) = true;
%
% Pmat = repmat(Pmat, [1 1 3]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
⛄三、运行结果


⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]张汝峰,项璟,陈鹏,张亚娟,张喜英,薛瑞.基于FMM算法的深度图像修复研究[J].湖北农机化. 2020,(01)
[2]齐玲,王锦.一种基于Criminisi算法改进的图像修复技术[J].软件导刊. 2019,18(04)
[3]何埜,李光耀,肖莽,谢力,彭磊,唐可.基于深度信息的图像修复算法[J].计算机应用. 2015,35(10)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
本文介绍了使用Matlab的FastICA方法进行彩色图像修复的技术,包括修复原理、字典学习步骤以及示例代码。作者还提到了Matlab版本以及相关领域的应用,如信号处理、机器学习和图像处理等。
699

被折叠的 条评论
为什么被折叠?



