【心电信号ECG去噪】小波变换(heursure规则阈值+Minimax规则阈值)心电信号去噪【含Matlab源码 3402期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
优快云 Matlab武动乾坤—代码获取方式

更多Matlab信号处理仿真内容点击👇
Matlab信号处理(进阶版)

⛳️关注优快云 Matlab武动乾坤,更多资源等你来!!

⛄一、心电信号处理简介

心电信号是评估心脏健康状况的重要指标,但由于心电信号受到多种干扰因素的影响,常常存在噪声。为了准确分析心电信号,需要对其进行去噪处理。小波阈值是一种常用的信号去噪方法,它可以有效地去除心电信号中的噪声。本文将介绍小波阈值方法的原理,并提供MATLAB代码实现。

1 小波阈值去噪Q方法原理
小波阈值去噪方法基于小波变换的思想,通过将信号分解为不同尺度的频带,然后对每个频带进行阈值处理来实现信号去噪。其主要步骤如下:
(1)对心电信号进行小波分解:首先,将心电信号进行小波分解,得到不同尺度的小波系数。
(2)阈值处理:对每个尺度的小波系数进行阈值处理,将小于某个阈值的小波系数置为零,保留大于阈值的小波系数。
(3)小波重构:将经过阈值处理后的小波系数进行小波重构,得到去噪后的心电信号。
小波变换是一种信号的时间——尺度(时间——频率)分析方法,它具有多分辨分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。即在低频部分具有较低的时间分辨率和较高的频率分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于分析非平稳的信号和提取信号的局部特征,所以小波变换被誉为分析处理信号的显微镜。

傅里叶是将信号分解成一系列不同频率的正余弦函数的叠加,同样小波变换是将信号分解为一系列的小波函数的叠加(或者说不同尺度、时间的小波函数拟合),而这些小波函数都是一个母小波经过平移和尺度伸缩得来的。

⛄二、部分源代码

%%%%%%%%%%信号小波分解
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%基于Haar小波%%%%%%%
ecg=fopen(‘100.dat’,‘r’);
N=1201;
data=fread(ecg,N,‘int16’);
data=data/10000;
save ECGdata data;
fclose(ecg);
x=0:0.004:4.8;
figure(1);
subplot(321);
plot(x,data);
axis([0 4.8 -4 4]);
title(‘原始心电信号’);
x=data;
wname=‘Haar’;
level=5;
[c,l]=wavedec(x,level,wname);
a5=wrcoef(‘a’,c,l,‘Haar’,5);
a4=wrcoef(‘a’,c,l,‘Haar’,4);
a3=wrcoef(‘a’,c,l,‘Haar’,3);
a2=wrcoef(‘a’,c,l,‘Haar’,2);
a1=wrcoef(‘a’,c,l,‘Haar’,1);
subplot(322);plot(a5);title(‘a5’);axis([0 1201 -2 2]);
subplot(323);plot(a4);title(‘a4’);axis([0 1201 -2 2]);
subplot(324);plot(a3);title(‘a3’);axis([0 1201 -2 2]);
subplot(325);plot(a2);title(‘a2’);axis([0 1201 -2 2]);
subplot(326);plot(a1);title(‘a1’);axis([0 1201 -2 2]);
%%%%%%%%%%%%基于db6小波%%%%%
ecg=fopen(‘100.dat’,‘r’);
N=1201;
data=fread(ecg,N,‘int16’);
data=data/10;
fclose(ecg);
x=0:0.004:4.8;
figure(2);
subplot(321);
plot(x,data);
axis([0 4.8 -4000 4000]);
title(‘原始心电信号’);
x=data;
wname=‘db6’;
level=5;
[c,l]=wavedec(x,level,wname);
a5=wrcoef(‘a’,c,l,‘db6’,5);
a4=wrcoef(‘a’,c,l,‘db6’,4);
a3=wrcoef(‘a’,c,l,‘db6’,3);
a2=wrcoef(‘a’,c,l,‘db6’,2);
a1=wrcoef(‘a’,c,l,‘db6’,1);
subplot(322);plot(a5);title(‘a5’);axis([0 1201 -2000 2000]);
subplot(323);plot(a4);title(‘a4’);axis([0 1201 -2000 2000]);
subplot(324);plot(a3);title(‘a3’);axis([0 1201 -2000 2000]);
subplot(325);plot(a2);title(‘a2’);axis([0 1201 -2000 2000]);
subplot(326);plot(a1);title(‘a1’);axis([0 1201 -2000 2000]);
%%%%%%%%%%%%%%%%%基于sym3小波%%%%%%%%%%%%%%%%%%%%%%%

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]张泾周,张光磊,戴冠中.自适应算法与小波变换在心电信号滤波中的应用[J].生物医学工程学杂志. 2006,(05)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值