Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Dynamic programming: solve this problem from bottom up.
public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null || triangle.size() == 0) {
return Integer.MAX_VALUE;
}
int n = triangle.size();
int[][] sum = new int[n][n];
for (int i = 0; i < n; i++) {
sum[n - 1][i] = triangle.get(n - 1).get(i);
}
for (int i = n - 2; i >= 0; i--) {
for (int j = 0; j <= i; j++) {
sum[i][j] = triangle.get(i).get(j) + Math.min(sum[i + 1][j], sum[i + 1][j + 1]);
}
}
return sum[0][0];
}
}