InternLM第四期入门岛第四关玩转HF/魔搭/魔乐社区

任务:使用Hugging Face平台、魔搭社区平台和魔乐社区平台下载文档中提到的模型(至少需要下载config.json文件、model.safetensors.index.json文件),请在必要的步骤以及结果当中截图。在HF平台上使用Spaces并把intern_cobuild部署成功,关键步骤截图。将我们下载好的config.json文件(也自行添加其他模型相关文件)上传到对应HF平台和魔搭社区平台,并截图。

一、Hugging Face平台

1、注册Hugging Face平台的账号

网址如下:https://huggingface.co/ 

这里需要魔法上网,我搭了一个梯子

2、下载InternLM模型

2.1因为网络和磁盘有限的原因,强烈不建议在 InternStudio 运行,因此这里使用CodeSpace

Sign in to GitHub · GitHub

在界面下方的终端(terminal)安装以下依赖,便于模型运行。

# 安装transformers
pip install transformers==4.38
pip install sentencepiece==0.1.99
pip install einops==0.8.0
pip install protobuf==5.27.2
pip install accelerate==0.33.0

注:HF的Transformers库可以

  • 直接使用预训练模型进行推理
  • 提供了大量预训练模型可供使用
  • 使用预训练模型进行迁移学习 因此在使用HF前,我们需要下载Transformers等一些常用依赖库

 2.2下载internlm2_5-7b-chat的配置文件

先新建一个hf_download_josn.py 文件

touch hf_download_josn.py

然后再文件中粘贴以下代码

import os
from huggingface_hub import hf_hub_download

# 指定模型标识符
repo_id = "internlm/internlm2_5-7b"

# 指定要下载的文件列表
files_to_download = [
    {"filename": "config.json"},
    {"filename": "model.safetensors.index.json"}
]

# 创建一个目录来存放下载的文件
local_dir = f"{repo_id.split('/')[1]}"
os.makedirs(local_dir, exist_ok=True)

# 遍历文件列表并下载每个文件
for file_info in files_to_download:
    file_path = hf_hub_download(
        repo_id=repo_id,
        filename=file_info["filename"],
        local_dir=local_dir
    )
    print(f"{file_info['filename']} file downloaded to: {file_path}")

运行该文件:

python hf_download_josn.py

由运行结果可知,已经从Hugging Face上下载了相应配置文件

 2.3下载internlm2_5-chat-1_8b并打印示例输出

创建一个python文件用于下载internlm2_5-1_8B模型并运行

touch hf_download_1_8_demo.py

hf_download_1_8_demo.py文件中粘贴以下内容:(在CodeSpace平台上是没有GPU资源的,因此我们Python代码中只使用CPU进行推理,我们需要修改跟CUDA有关的API

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("internlm/internlm2_5-1_8b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("internlm/internlm2_5-1_8b", torch_dtype=torch.float16, trust_remote_code=True)
model = model.eval()

inputs = tokenizer(["A beautiful flower"], return_tensors="pt")
gen_kwargs = {
    "max_length": 128,
    "top_p": 0.8,
    "temperature": 0.8,
    "do_sample": True,
    "repetition_penalty": 1.0
}

# 以下内容可选,如果解除注释等待一段时间后可以看到模型输出
output = model.generate(**inputs, **gen_kwargs)
output = tokenizer.decode(output[0].tolist(), skip_special_tokens=True)
print(output)

运行结果:

这里以“A beautiful flower”开头,模型对其进行“续写”,InternLM的模型拥有强大的数学方面的能力。这边它输出的文本似乎是关于一个数学问题,具体是关于一个花朵的花瓣数量。

3.在HF平台上使用Spaces并把intern_cobuild部署成功

3.1.Hugging Face Spaces的使用:

Hugging Face Spaces 是一个允许我们轻松地托管、分享和发现基于机器学习模型的应用的平台。Spaces 使得开发者可以快速将我们的模型部署为可交互的 web 应用,且无需担心后端基础设施或部署的复杂性。 首先访问以下链接,进入Spaces。在右上角点击Create new Space进行创建:

网址:https://huggingface.co/spaces

 在创建页面中,输入项目名为intern_cobuild2,并选择Static应用进行创建

创建成功后会自动跳转到一个默认的HTML页面。创建好项目后,回到我们的CodeSpace,接着clone项目。

cd /workspaces/codespaces-jupyter
git clone https://huggingface.co/spaces/kxrrrr/intern_cobuild
cd /workspaces/codespaces-jupyter/intern_cobuild

找到该目录文件夹下的index.html文件,修改我们的html代码

<!doctype html>
<html>
<head>
  <meta charset="utf-8" />
  <meta name="viewport" content="width=device-width" />
  <title>My static Space</title>
  <style>
    html, body {
      margin: 0;
      padding: 0;
      height: 100%;
    }
    body {
      display: flex;
      justify-content: center;
      align-items: center;
    }
    iframe {
      width: 430px;
      height: 932px;
      border: none;
    }
  </style>
</head>
<body>
  <iframe src="https://colearn.intern-ai.org.cn/cobuild" title="description"></iframe>
</body>
</html>

保存后就可以push到远程仓库上了,它会自动更新页面。

git add .
git commit -m "update: colearn page"
git push

在执行git push操作时,我遇到了如下问题:

remote: Password authentication in git is no longer supported. You must use a user access token or an SSH key instead.

 解决策略:出于安全考虑,此处我省略了我的token

git remote set-url origin https://kxrrrr:<token>@huggingface.co/spaces/kxrrrr/intern_cobuild2/

 再次进入Space界面,就可以看到实战营的共建活动

4.Hugging Face模型上传

安装git lfs,对大文件系统支持

curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
# sudo apt-get install git-lfs # CodeSpace里面可能会有aptkey冲突且没有足够权限
git lfs install # 直接在git环境下配置git LFS
pip install huggingface_hub

使用huggingface-cli login命令进行登录,登录过程中需要输入用户的Access Tokens,获取时,需要先验证email

 完成验证后,点击create new token,创建一个类型为“Write”的token,并请复制好token后要存储在合适的地方

 接着可以在CodeSpace里面,使用

git config --global credential.helper store
huggingface-cli login

这时需要输入刚刚的token

 创建项目

cd /workspaces/codespaces-jupyter

#intern_study_L0_4就是model_name
huggingface-cli repo create intern_study_L0_4

# 克隆到本地 your_github_name 注意替换成你自己的
git clone https://huggingface.co/{your_github_name}/intern_study_L0_4

刷新文件目录可以看到克隆好的intern_study_L0_4文件夹我们可以把训练好的模型保存进里面,这里考虑到网速问题,只上传我们刚刚下载好的config.json,把它复制粘贴进这个文件夹里面,还可以写一个README.md文件,比如可以粘贴以下内容:

# 书生浦语大模型实战营camp4
- hugging face模型上传测试
- 更多内容请访问 https://github.com/InternLM/Tutorial/tree/camp4

 

 用git提交到远程仓库

cd intern_study_L0_4
git add .
git commit -m "add:intern_study_L0_4"
git push

 注意:

如果git push 报错,可能是第一次上传时需要验证,请使用以下命令,注意替换<>里面的内容,然后再次git push一下就可以了
git remote set-url origin https://<user_name>:<token>@huggingface.co/<repo_path>
# 这里blank和hf_xxxxxxxxxxxx只是示例 请替换为你的username和之前申请的access token

git pull origin

现在可以在Hugging Face的个人profile里面看到这个model,也可以直接将下面的Url输入到浏览器网址栏上 

https://huggingface.co/<user_name>/intern_study_L0_4

 

 二、魔塔社区平台

1.注册登录ModelScope平台

进入导航栏模型库,搜索 internlm2_5-chat-1_8b,下载1.8b的对话模型,也类似于hugging face 一样拥有具体的详情页。

2.创建开发机

我们选择 10% 的开发机,镜像选择为 Cuda-12.2。在输入开发机名称后,点击创建开发机。

创建好开发机后,进入开发机

3.环境配置

# 激活环境
conda activate /root/share/pre_envs/pytorch2.1.2cu12.1

# 安装 modelscope
pip install modelscope -t /root/env/maas
pip install numpy==1.26.0  -t /root/env/maas
pip install packaging -t /root/env/maas

注意:为了保证能够找到我们每次装的依赖,每次新建一个终端之后都需要导出path 如果不改变终端,导出一次就够了

export PATH=$PATH:/root/env/maas/bin
export PYTHONPATH=/root/env/maas:$PYTHONPATH

创建demo目录

mkdir -p /root/ms_demo

4.下载指定文件

internlm2_5-7b-chat 考虑到7B的模型文件比较大,这里我们先采用modelscope的cli工具(当然hugging face也有)来下载指定文件,在命令行输入以下命令

modelscope download \
    --model 'Shanghai_AI_Laboratory/internlm2_5-7b-chat' \
    tokenizer.json config.json model.safetensors.index.json \
    --local_dir '/root/ms_demo'

刷新一下文件目录,就能看到在ms_demo中下载了指定的json文件。

internlm2_5-1_8b-chat

modelscope download \
    --model 'Shanghai_AI_Laboratory/internlm2_5-1_8b-chat' \
    tokenizer.json config.json model.safetensors.index.json \
    --local_dir '/root/ms_demo'

  5.上传模型

#Git模型下载
git clone https://www.modelscope.cn/xkxr0729/internlm2_5-1_8b-chat-027

结果如下:

 三、魔乐社区平台

1.下载internlm2_5-chat-1_8b模型

使用刚刚的开发机

cd /
mkdir ml_demo
cd ml_demo
#下载模型
# 确保安装git-lfs 保证大文件的正常下载
apt-get install git-lfs
git lfs install
# clone 仓库
git clone https://modelers.cn/Intern/internlm2_5-1_8b-chat.git

刷新一下文件夹,即可在ml_demo中找到下载好的模型文件

2.上传模型

在魔乐社区一般有两种方法,第一种是安装好openmid后使用openmind的API来上传文件,另一个就是用git命令来推送文件,跟一般的git工作流相类似。可参考上传文件 | 魔乐社区

附笔记:

1.Hugging Face 最初专注于开发聊天机器人服务。尽管他们的聊天机器人项目并未取得预期的成功,但他们在GitHub上开源的Transformers库却意外地在机器学习领域引起了巨大轰动。如今,Hugging Face已经发展成为一个拥有超过100,000个预训练模型和10,000个数据集的平台,被誉为机器学习界的GitHub。

2.ModelScope 是一个“模型即服务”(MaaS)平台,由阿里巴巴集团的达摩院推出和维护。它旨在汇集来自AI社区的最先进的机器学习模型,并简化在实际应用中使用AI模型的流程。通过ModelScope,用户可以轻松地探索、推理、微调和部署各种AI模型。

3.魔乐社区(Modelers)是一个提供多样化、开源模型的平台,旨在促进开发者和研究人员在最先进的模型和流行应用上进行协作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值