InternLM进阶岛第3关LMDeploy 量化部署进阶实践

任务要求:

  • 使用结合W4A16量化与kv cache量化的模型封装本地API并与大模型进行一次对话,作业截图需包括显存占用情况与大模型回复,参考4.1 API开发,请注意2.2.3节与4.1节应使用作业版本命令。internlm2_5-1_8b-chat

一、环境配置

1.创建Cuda12.2-conda镜像,30%A100*1(24GB显存容量)的开发机。

2.创建一个名为lmdeploy的conda环境,python版本为3.10,创建成功后激活环境并安装0.5.3版本的lmdeploy及相关包。

conda create -n lmdeploy  python=3.10 -y
conda activate lmdeploy
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3

pip install datasets==2.19.2

运行以下命令,创建文件夹并设置开发机共享目录的软链接。

mkdir /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat /root/models
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/models

3.验证获取的模型文件能否正常工作

conda activate lmdeploy
lmdeploy chat /root/models/internlm2_5-7b-chat

 稍等片刻,即可在CLI(“命令行界面” Command Line Interface的缩写)中和InternLM2.5尽情对话了,注意输入内容完成后需要按两次回车才能够执行

 现在的显存:

如果想要实现显存资源的监控,我们也可以新开一个终端输入如下两条指令的任意一条,查看命令输入时的显存占用情况。

nvidia-smi 
studio-smi 

 

二、LMDeploy API部署InternLM2.5

2.1启动API服务器

首先让我们进入创建好的conda环境,并通下命令启动API服务器,部署InternLM2.5模型:

conda activate lmdeploy
lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

稍待片刻,打开浏览器,访问http://127.0.0.1:23333看到如下界面即代表部署成功。

 在此之前需要进行端口映射

 ssh -CNg -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的ssh端口号

2.2以命令行形式链接API服务器

关闭http://127.0.0.1:23333网页,但保持终端和本地窗口不动,新建一个终端运行如下命令,激活conda环境并启动命令行客户端。

conda activate lmdeploy
lmdeploy serve api_client http://localhost:23333

稍待片刻,等出现double enter to end input >>>的输入提示即启动成功,此时便可以随意与InternLM2.5对话,同样是两下回车确定,输入exit退出。

 2.3以Gradio网页形式连接API服务器

保持第一个终端不动,在新建终端中输入exit退出。

输入以下命令,使用Gradio作为前端,启动网页。

lmdeploy serve gradio http://localhost:23333 \
    --server-name 0.0.0.0 \
    --server-port 6006

稍待片刻,打开浏览器,访问地址http://127.0.0.1:6006,然后就可以与模型尽情对话了。(同样需要进行端口映射)

 三、LMDeploy Lite

3.1设置最大kv cache缓存大小

kv cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,kv cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,kv cache全部存储于显存,以加快访存速度。

模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、kv cache占用的显存,以及中间运算结果占用的显存。LMDeploy的kv cache管理器可以通过设置--cache-max-entry-count参数,控制kv缓存占用剩余显存的最大比例。默认的比例为0.8。

显存占用情况:

3.2设置在线kv cache int4/int8 量化

通过2.1 LMDeploy API部署InternLM2.5的实践为例,输入以下指令,启动API服务器。

lmdeploy serve api_server \
    /root/models/internlm2_5-1_8b-chat \
    --model-format hf \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

稍待片刻,显示如下即代表服务启动成功。 

 .

3.3W4A16量化和部署

W4:这通常表示权重量化为4位整数(int4)。这意味着模型中的权重参数将从它们原始的浮点表示(例如FP32、BF16或FP16,Internlm2.5精度为BF16)转换为4位的整数表示。这样做可以显著减少模型的大小。
A16:这表示激活(或输入/输出)仍然保持在16位浮点数(例如FP16或BF16)。激活是在神经网络中传播的数据,通常在每层运算之后产生。

W4A16的量化配置意味着:

  • 权重被量化为4位整数。
  • 激活保持为16位浮点数。

输入以下指令,执行量化工作。

lmdeploy lite auto_awq \
   /root/models/internlm2_5-1_8b-chat \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/models/internlm2_5-1_8b-chat-w4a16-4bit

命令解释:

lmdeploy lite auto_awq: lite这是LMDeploy的命令,用于启动量化过程,而auto_awq代表自动权重量化(auto-weight-quantization)。
/root/models/internlm2_5-7b-chat: 模型文件的路径。
--calib-dataset 'ptb': 这个参数指定了一个校准数据集,这里使用的是’ptb’(Penn Treebank,一个常用的语言模型数据集)。
--calib-samples 128: 这指定了用于校准的样本数量—128个样本
--calib-seqlen 2048: 这指定了校准过程中使用的序列长度—2048
--w-bits 4: 这表示权重(weights)的位数将被量化为4位。
--work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit: 这是工作目录的路径,用于存储量化后的模型和中间结果。

等终端输出如下时,说明正在推理中,稍待片刻。

如果此处出现报错:TypeError: 'NoneType' object is not callable,原因是 当前版本的 datasets3.0 无法下载calibrate数据集 在命令前加一行 pip install datasets==2.19.2 可以解决

等待推理完成,便可以直接在你设置的目标文件夹看到对应的模型文件。

那么推理后的模型和原本的模型区别在哪里呢?最明显的两点是模型文件大小以及占据显存大小。

我们可以输入如下指令查看在当前目录中显示所有子目录的大小。

cd /root/models/
du -sh *

原模型大小

cd /root/share/new_models/Shanghai_AI_Laboratory/
du -sh *

 存占用情况对比

lmdeploy chat /root/models/internlm2_5-1_8b-chat-w4a16-4bit/ --model-format awq

 

3.4 W4A16 量化+ KV cache+KV cache 量化 

输入以下指令,让我们同时启用量化后的模型、设定kv cache占用和kv cache int4量化。

lmdeploy serve api_server \
    /root/models/internlm2_5-1_8b-chat-w4a16-4bit/ \
    --model-format awq \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

此时显存占比如下

 四、LMDeploy与InternVL2

3.1 LMDeploy Lite

InternVL2-26B需要约70+GB显存,但是为了让我们能够在30%A100上运行,需要先进行量化操作,这也是量化本身的意义所在——即降低模型部署成本。

针对InternVL系列模型,让我们先进入conda环境,并输入以下指令,执行模型的量化工作。(本步骤耗时较长,请耐心等待)

conda activate lmdeploy
lmdeploy lite auto_awq \
   /root/models/InternVL2-26B \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/models/InternVL2-26B-w4a16-4bit

 等终端输出如下时,说明正在推理中,稍待片刻。

3.2LMDeploy之FastAPI

使用以下命令:

conda activate lmdeploy
lmdeploy serve api_server \
    /root/models/internlm2_5-1_8b-chat-w4a16-4bit \
    --model-format awq \
    --cache-max-entry-count 0.4 \
    --quant-policy 4 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

保持终端窗口不动,新建一个终端。 

在新建终端中输入如下指令,新建internlm2_5.py

touch /root/internlm2_5.py

将以下内容复制粘贴进internlm2_5.py

# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互
from openai import OpenAI
 
 
# 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL
client = OpenAI(
    api_key='YOUR_API_KEY',  
    # 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可
    base_url="http://0.0.0.0:23333/v1"  
    # 指定API的基础URL,这里使用了本地地址和端口
)
 
# 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID
# models.list()返回一个模型列表,每个模型都有一个id属性
model_name = client.models.list().data[0].id
 
# 使用client.chat.completions.create()方法创建一个聊天补全请求
# 这个方法需要传入多个参数来指定请求的细节
response = client.chat.completions.create(
  model=model_name,  
  # 指定要使用的模型ID
  messages=[  
  # 定义消息列表,列表中的每个字典代表一个消息
    {"role": "system", "content": "你是一个友好的小助手,负责解决问题."},  
    # 系统消息,定义助手的行为
    {"role": "user", "content": "帮我讲述一个关于白雪公主的小故事"},  
    # 用户消息,询问时间管理的建议
  ],
    temperature=0.8,  
    # 控制生成文本的随机性,值越高生成的文本越随机
    top_p=0.8  
    # 控制生成文本的多样性,值越高生成的文本越多样
)
 
# 打印出API的响应结果
print(response.choices[0].message.content)

Ctrl+S键保存(Mac用户按Command+S)。

现在让我们在新建终端输入以下指令激活环境并运行python代码。

conda activate lmdeploy
python /root/internlm2_5.py

终端会输出如下结果。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值