AssertionError:assert all(map(lambda i: i.is_cuda, inputs))

当系统有多个GPU且需要指定单个GPU运行模型时,可以使用torch.nn.DataParallel或者设置环境变量CUDA_VISIBLE_DEVICES来指定GPU。DataParallel方法通过传入device_ids参数,如device_ids=[0],将模型放在第一个GPU上。另一种方法是通过os.environ设置CUDA_VISIBLE_DEVICES为需要的GPU编号,如0,限制可见的GPU。
--------------------------------------------------------------------------- AssertionError Traceback (most recent call last) Cell In[6], line 11 4 model.compile( 5 optimizer=keras.optimizers.Adam(learning_rate=3e-5), 6 loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), 7 metrics=["accuracy"] 8 ) 10 # 训练 ---> 11 model.fit(dataset, epochs=3) File f:\Programmer\python\MyAI\.venv\Lib\site-packages\transformers\modeling_tf_utils.py:1229, in TFPreTrainedModel.fit(self, *args, **kwargs) 1226 @functools.wraps(keras.Model.fit) 1227 def fit(self, *args, **kwargs): 1228 args, kwargs = convert_batch_encoding(*args, **kwargs) -> 1229 return super().fit(*args, **kwargs) File f:\Programmer\python\MyAI\.venv\Lib\site-packages\tf_keras\src\utils\traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs) 67 filtered_tb = _process_traceback_frames(e.__traceback__) 68 # To get the full stack trace, call: 69 # `tf.debugging.disable_traceback_filtering()` ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb File ~\AppData\Local\Temp\__autograph_generated_filecqzbngog.py:15, in outer_factory.<locals>.inner_factory.<locals>.tf__train_function(iterator) 13 try: 14 do_return = True ---> 15 retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) 16 except: 17 do_return = False File f:\Programmer\python\MyAI\.venv\Lib\site-packages\transformers\modeling_tf_utils.py:1672, in TFPreTrainedModel.train_step(self, data) 1670 y_pred = self(x, training=True, return_loss=True) 1671 else: -> 1672 y_pred = self(x, training=True) 1673 if self._using_dummy_loss: 1674 loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses) File ~\AppData\Local\Temp\__autograph_generated_file2j_mldnl.py:37, in outer_factory.<locals>.inner_factory.<locals>.tf__run_call_with_unpacked_inputs(self, *args, **kwargs) 35 try: 36 do_return = True ---> 37 retval_ = ag__.converted_call(ag__.ld(func), (ag__.ld(self),), dict(**ag__.ld(unpacked_inputs)), fscope) 38 except: 39 do_return = False File ~\AppData\Local\Temp\__autograph_generated_file21svnsa_.py:90, in outer_factory.<locals>.inner_factory.<locals>.tf__call(self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, head_mask, decoder_head_mask, encoder_outputs, past_key_values, inputs_embeds, decoder_inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict, training) 88 nonlocal decoder_input_ids 89 pass ---> 90 ag__.if_stmt(ag__.and_(lambda: ag__.ld(labels) is not None, lambda: ag__.and_(lambda: ag__.ld(decoder_input_ids) is None, lambda: ag__.ld(decoder_inputs_embeds) is None)), if_body_2, else_body_2, get_state_2, set_state_2, ('decoder_input_ids',), 1) 91 decoder_outputs = ag__.converted_call(ag__.ld(self).decoder, (ag__.ld(decoder_input_ids),), dict(attention_mask=ag__.ld(decoder_attention_mask), encoder_hidden_states=ag__.ld(hidden_states), encoder_attention_mask=ag__.ld(attention_mask), inputs_embeds=ag__.ld(decoder_inputs_embeds), head_mask=ag__.ld(decoder_head_mask), past_key_values=ag__.ld(past_key_values), use_cache=ag__.ld(use_cache), output_attentions=ag__.ld(output_attentions), output_hidden_states=ag__.ld(output_hidden_states), return_dict=ag__.ld(return_dict), training=ag__.ld(training)), fscope) 92 sequence_output = ag__.ld(decoder_outputs)[0] File ~\AppData\Local\Temp\__autograph_generated_file21svnsa_.py:85, in outer_factory.<locals>.inner_factory.<locals>.tf__call.<locals>.if_body_2() 83 def if_body_2(): 84 nonlocal decoder_input_ids ---> 85 decoder_input_ids = ag__.converted_call(ag__.ld(self)._shift_right, (ag__.ld(labels),), None, fscope) File ~\AppData\Local\Temp\__autograph_generated_file9hld5eww.py:13, in outer_factory.<locals>.inner_factory.<locals>.tf___shift_right(self, input_ids) 11 decoder_start_token_id = ag__.ld(self).config.decoder_start_token_id 12 pad_token_id = ag__.ld(self).config.pad_token_id ---> 13 assert ag__.ld(decoder_start_token_id) is not None, 'self.model.config.decoder_start_token_id has to be defined. In TF T5 it is usually set to the pad_token_id. See T5 docs for more information' 14 start_tokens = ag__.converted_call(ag__.ld(tf).fill, ((ag__.converted_call(ag__.ld(shape_list), (ag__.ld(input_ids),), None, fscope)[0], 1), ag__.ld(decoder_start_token_id)), None, fscope) 15 start_tokens = ag__.converted_call(ag__.ld(tf).cast, (ag__.ld(start_tokens), ag__.ld(input_ids).dtype), None, fscope) AssertionError: in user code: File "f:\Programmer\python\MyAI\.venv\Lib\site-packages\tf_keras\src\engine\training.py", line 1398, in train_function * return step_function(self, iterator) File "f:\Programmer\python\MyAI\.venv\Lib\site-packages\tf_keras\src\engine\training.py", line 1381, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "f:\Programmer\python\MyAI\.venv\Lib\site-packages\tf_keras\src\engine\training.py", line 1370, in run_step ** outputs = model.train_step(data) File "f:\Programmer\python\MyAI\.venv\Lib\site-packages\transformers\modeling_tf_utils.py", line 1672, in train_step y_pred = self(x, training=True) File "f:\Programmer\python\MyAI\.venv\Lib\site-packages\tf_keras\src\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\Users\13636\AppData\Local\Temp\__autograph_generated_file2j_mldnl.py", line 40, in tf__run_call_with_unpacked_inputs raise File "C:\Users\13636\AppData\Local\Temp\__autograph_generated_file21svnsa_.py", line 90, in tf__call ag__.if_stmt(ag__.and_(lambda: ag__.ld(labels) is not None, lambda: ag__.and_(lambda: ag__.ld(decoder_input_ids) is None, lambda: ag__.ld(decoder_inputs_embeds) is None)), if_body_2, else_body_2, get_state_2, set_state_2, ('decoder_input_ids',), 1) File "C:\Users\13636\AppData\Local\Temp\__autograph_generated_file21svnsa_.py", line 85, in if_body_2 decoder_input_ids = ag__.converted_call(ag__.ld(self)._shift_right, (ag__.ld(labels),), None, fscope) File "C:\Users\13636\AppData\Local\Temp\__autograph_generated_file9hld5eww.py", line 13, in tf___shift_right assert ag__.ld(decoder_start_token_id) is not None, 'self.model.config.decoder_start_token_id has to be defined. In TF T5 it is usually set to the pad_token_id. See T5 docs for more information' AssertionError: Exception encountered when calling layer 'tft5_for_conditional_generation' (type TFT5ForConditionalGeneration). in user code: File "f:\Programmer\python\MyAI\.venv\Lib\site-packages\transformers\modeling_tf_utils.py", line 1399, in run_call_with_unpacked_inputs * return func(self, **unpacked_inputs) File "f:\Programmer\python\MyAI\.venv\Lib\site-packages\transformers\models\t5\modeling_tf_t5.py", line 1456, in call * decoder_input_ids = self._shift_right(labels) File "f:\Programmer\python\MyAI\.venv\Lib\site-packages\transformers\models\t5\modeling_tf_t5.py", line 965, in _shift_right * assert decoder_start_token_id is not None, ( AssertionError: self.model.config.decoder_start_token_id has to be defined. In TF T5 it is usually set to the pad_token_id. See T5 docs for more information Call arguments received by layer 'tft5_for_conditional_generation' (type TFT5ForConditionalGeneration): • input_ids={'input_ids': 'tf.Tensor(shape=(None, 512), dtype=int32)', 'attention_mask': 'tf.Tensor(shape=(None, 512), dtype=int32)', 'labels': 'tf.Tensor(shape=(None, 128), dtype=int32)'} • attention_mask=None • decoder_input_ids=None • decoder_attention_mask=None • head_mask=None • decoder_head_mask=None • encoder_outputs=None • past_key_values=None • inputs_embeds=None • decoder_inputs_embeds=None • labels=None • use_cache=None • output_attentions=None • output_hidden_states=None • return_dict=None • training=True
12-01
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值