RMQ简介 :http://blog.youkuaiyun.com/niushuai666/article/details/6624672
//思路使用RMQ算法,分别计算某个区间上的最小值和最大值,做差即可
#include <iostream>
#include <cmath>
using namespace std;
const int MAX_NUM = 200001;
int fmax[MAX_NUM][20], fmin[MAX_NUM][20];
int n, q;
void init()
{
int i, j, lg = floor(log10(double(n))/log10(double(2)));
for (j = 1; j <= lg; ++j){
//i + 2^(j-1) + 2^(j-1) - 1 <= n ==> i <= n + 1 - 2^j
for (i = 1; i <= n+1-(1<<j); ++i){
//i ~ i + 2^(j-1) - 1, i + 2^(j-1) ~ i + 2^(j-1) + 2^(j-1) - 1
// ==> i ~ i + 2^j - 1
fmax[i][j] = max(fmax[i][j-1], fmax[i+(1<<(j-1))][j-1]);
fmin[i][j] = min(fmin[i][j-1], fmin[i+(1<<(j-1))][j-1]);
}
}
}
int main()
{
int h, i, a, b, lg;
scanf("%d%d", &n, &q);
for (i = 1; i <= n; ++i){
scanf("%d", &h);
fmax[i][0] = fmin[i][0] = h;
}
init();
for (i = 1; i <= q; ++i){
scanf("%d%d", &a, &b);
if (a > b) swap(a, b);
lg = floor(log10(double(b-a+1))/log10(double(2)));
//max(fmax[a][lg], fmax[b-(1<<lg)+1][lg])
//两个区间中间有重叠,因此两者中较大的就是该区间的最大值
printf("%d\n", max(fmax[a][lg], fmax[b-(1<<lg)+1][lg]) -
min(fmin[a][lg], fmin[b-(1<<lg)+1][lg]));
}
return 0;
}