Tree
Description
Give a tree with n vertices,each edge has a length(positive integer less than 1001).
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.
Input
The input contains several test cases. The first line of each test case contains two integers n, k. (n<=10000) The following n-1 lines each contains three integers u,v,l, which means there is an edge between node u and v of length l.
The last test case is followed by two zeros.
Output
For each test case output the answer on a single line.
Sample Input
5 4
1 2 3
1 3 1
1 4 2
3 5 1
0 0
Sample Output
8
Source
树点分治例题
大神的论文:《分治算法在树的路径问题中的应用》
(分治思想):把问题分成形式相同,规模更小的子问题。
对于一棵有根树, 树中满足要求的一条路径,必然是以下两种情况之一:
1、经过根节点
2、不经过根节点,在根节点的一棵子树中
对于情况2,可以递归(重复步骤1,2)求解,主要考虑情况1(因题而异,注意去重)。
找根节点就是重点了,因为要尽可能减少深度,所以要找一个使子树中size最大的尽量小(也就是 重心})。然后使重心作为根,继续操作(记得标记是否找过)。
ps:与“最近点对”有异曲同工之妙
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int num,t,K,ans;
#define N 10005
int to[N+N],head[N],Next[N+N],val[N+N];
int a[N],deep[N],size[N];
bool flag[N];
void add(int u,int v,int z){
++num;
to[num]=v;
val[num]=z;
Next[num]=head[u];
head[u]=num;
}
void getsize(int u,int fa){
size[u]=1;
for (int i=head[u];i;i=Next[i])
if (to[i]!=fa&&flag[to[i]]){
getsize(to[i],u);
size[u]+=size[to[i]];
}
}//预处理size
int getroot(int u,int fa,int ma){
for (int i=head[u];i;i=Next[i])
if (to[i]!=fa&&flag[to[i]]&&size[to[i]]+size[to[i]]>ma) return getroot(to[i],u,ma);
return u;
}//找重心
void getdeep(int u,int fa){
a[t++]=deep[u];
for (int i=head[u];i;i=Next[i])
if (to[i]!=fa&&flag[to[i]]) deep[to[i]]=deep[u]+val[i],getdeep(to[i],u);
}
int calc(int u,int ss){
t=0;
deep[u]=ss;
getdeep(u,-1);
sort(a,a+t);
int l=0,r=t-1,xx=0;
while (l<r){
if (a[l]+a[r]>K){--r;continue;}
xx+=r-l;
++l;
}
return xx;
}
void work(int u){
flag[u]=false;
getsize(u,-1);
ans+=calc(u,0);
for (int i=head[u];i;i=Next[i])
if (flag[to[i]]){
ans-=calc(to[i],val[i]);
int rt=getroot(to[i],u,size[to[i]]);
work(rt);
}
}
int main(){
int n;
while (scanf("%d%d",&n,&K)!=EOF){
if (n==0&&K==0) break;
ans=0;
num=0;
for (int i=1;i<=n;++i) head[i]=0,flag[i]=true;
for (int i=1;i<n;++i){
int u,v,z;
scanf("%d%d%d",&u,&v,&z);
add(u,v,z);
add(v,u,z);
}
getsize(1,-1);
int rt=getroot(1,-1,size[1]);
work(rt);
printf("%d\n",ans);
}
return 0;
}