Hdu6095 Rikka with Competition(2017多校第5场)

本文介绍了一种基于数值差和阈值K的比赛胜者预测算法。该算法通过排序和比较数值差来确定可能获胜的选手数量。适用于n个选手间的淘汰赛制。

Rikka with Competition

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 425    Accepted Submission(s): 350


Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

A wrestling match will be held tomorrow.  n  players will take part in it. The  i th player’s strength point is  ai .

If there is a match between the  i th player plays and the  j th player, the result will be related to  |aiaj| . If  |aiaj|>K , the player with the higher strength point will win. Otherwise each player will have a chance to win.

The competition rules is a little strange. Each time, the referee will choose two players from all remaining players randomly and hold a match between them. The loser will be be eliminated. After  n1  matches, the last player will be the winner.

Now, Yuta shows the numbers  n,K  and the array  a  and he wants to know how many players have a chance to win the competition.

It is too difficult for Rikka. Can you help her?  
 

Input
The first line contains a number  t(1t100) , the number of the testcases. And there are no more than  2  testcases with  n>1000 .

For each testcase, the first line contains two numbers  n,K(1n105,0K<109) .

The second line contains  n  numbers  ai(1ai109) .
 

Output
For each testcase, print a single line with a single number -- the answer.
 

Sample Input
  
2 5 3 1 5 9 6 3 5 2 1 5 9 6 3
 

Sample Output
  
5 1
 

Source

————————————————————————————————————

题目的意思是给出n个数,进行n-1场比赛,每场比赛如果双方值差的绝对值大于k就大的数赢,否则都有可能赢,问最后最多多少人可能赢

思路:先按大小排序,然后判差值是否大于k,第一次大于k之前的数的个数就是答案


#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <unordered_map>
#include <functional>

using namespace std;

#define LL long long
const int INF = 0x3f3f3f3f;

int a[100005];
int T,n,k;
int main()
{

    for(scanf("%d",&T);T--;)
    {
     scanf("%d%d",&n,&k);
     for(int i=0;i<n;i++)
       scanf("%d",&a[i]);
       sort(a,a+n);
       int ans=1;
       for(int i=n-2;i>=0;i--)
       {
           if(a[i+1]-a[i]<=k)
            ans++;
            else
                break;
       }
       printf("%d\n",ans);
    }
    return 0;
}



【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值