HDU6047 Maximum Sequence(2017多校第2场)

Maximum Sequence

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 599    Accepted Submission(s): 306


Problem Description
Steph is extremely obsessed with “sequence problems” that are usually seen on magazines: Given the sequence 11, 23, 30, 35, what is the next number? Steph always finds them too easy for such a genius like himself until one day Klay comes up with a problem and ask him about it.

Given two integer sequences {ai} and {bi} with the same length n, you are to find the next n numbers of {ai}:  an+1a2n . Just like always, there are some restrictions on  an+1a2n : for each number  ai , you must choose a number  bk  from {bi}, and it must satisfy  ai ≤max{ aj -j│ bk ≤j<i}, and any  bk  can’t be chosen more than once. Apparently, there are a great many possibilities, so you are required to find max{ 2nn+1ai } modulo  109 +7 .

Now Steph finds it too hard to solve the problem, please help him.
 

Input
The input contains no more than 20 test cases.
For each test case, the first line consists of one integer n. The next line consists of n integers representing {ai}. And the third line consists of n integers representing {bi}.
1≤n≤250000, n≤a_i≤1500000, 1≤b_i≤n.
 

Output
For each test case, print the answer on one line: max{ 2nn+1ai } modulo  109 +7。
 

Sample Input
  
  
4 8 11 8 5 3 1 4 2
 

Sample Output
  
  
27
Hint
For the first sample: 1. Choose 2 from {bi}, then a_2…a_4 are available for a_5, and you can let a_5=a_2-2=9; 2. Choose 1 from {bi}, then a_1…a_5 are available for a_6, and you can let a_6=a_2-2=9;
 

Source
 

Recommend
liuyiding

———————————————————————————————————

题目的意思是给出一个a序列和b序列,构造a序列后n项,构造方法是取b的一个数,选a序列从[b[i],j)的数减去索引的最大值,j是当前构造的位置。

思路:贪心b优先选最小的,线段树维护区间最大值,或者优先队列

线段树:

#include <iostream>  
#include <cstdio>  
#include <cstring>  
#include <string>  
#include <algorithm>  
#include <map>  
#include <cmath>
#include <set>  
#include <stack>  
#include <queue>  
#include <vector>  
#include <bitset>  
#include <functional>

using namespace std;

#define LL long long  
const int INF = 0x3f3f3f3f;
const LL mod = 1000000007;

int n;
int ma[2000009];
int b[250009];

void build(int k, int l, int r)
{
    if (l == r)
    {
        if (l > n) return;
        scanf("%d", &ma[k]); ma[k] -= l;
        return;
    }
    int mid = (l + r) >> 1;
    build(k << 1, l, mid);
    build(k << 1 | 1, mid + 1, r);
    ma[k] = max(ma[k << 1], ma[k << 1 | 1]);
}

int query(int k, int l, int r, int ll, int rr)
{
    if (l >= ll&&r <= rr) return ma[k];
    int ma = -1, mid = (l + r) >> 1;
    if (mid >= ll) ma = max(ma, query(k << 1, l, mid, ll, rr));
    if (rr > mid) ma = max(ma, query(k << 1 | 1, mid + 1, r, ll, rr));
    return ma;
}

void update(int k, int l, int r, int p, int val)
{
    if (l == r) { ma[k] = val; return; }
    int mid = (l + r) >> 1;
    if (p <= mid) update(k << 1, l, mid, p, val);
    else update(k << 1 | 1, mid + 1, r, p, val);
    ma[k] = max(ma[k << 1], ma[k << 1 | 1]);
}

int main()
{
    while (~scanf("%d", &n))
    {
        build(1, 1, 2 * n);
        for (int i = 1; i <= n; i++) scanf("%d", &b[i]);
        sort(b + 1, b + 1 + n);
        LL ans = 0;
        for (int i = n + 1; i <= 2 * n; i++)
        {
            int k = query(1, 1, 2 * n, b[i - n], i - 1);
            update(1, 1, 2 * n, i, k - i);
            ans += 1LL*k;
            ans %= mod;
        }
        printf("%lld\n", ans);
    }
    return 0;
}

优先队列:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <math.h>
#include <time.h>
#include <algorithm>
#include <complex>
#include <vector>
#include <stack>
#include <queue>
#include <unordered_map>
#include <set>
using namespace std;

#define LL long long
#define mem(a,b) memset(a,b,sizeof a);

const int inf=0x3f3f3f3f;
const LL llinf=0x3f3f3f3f3f3f3f3f;
const double pi=acos(-1.0);
const double eps=1e-8;
const LL mod=1e9+7;
const int maxn=2010;

int a[250005],b[250005];
struct node
{
    int id,val;
    friend bool operator<(node a,node b)
    {
        return a.val<b.val;
    }
};

int main()
{
    int n;
    node f;
    while(~scanf("%d",&n))
    {
        priority_queue<node>q;
        for(int i=1; i<=n; i++)
        {
            scanf("%d",&a[i]),
            f.id=i;
            f.val=a[i]-i;
                  q.push(f);
        }
        for(int i=1; i<=n; i++)
            scanf("%d",&b[i]);
        sort(b+1,b+n+1);
        LL ans=0;
        for(int i=1; i<=n; i++)
        {
            while(q.top().id<b[i])
            {
                q.pop();
            }
            f.id=n+i;
            f.val=q.top().val-f.id;
            ans+=q.top().val;
            ans%=mod;
            q.push(f);
        }
        printf("%lld\n",ans);
    }


    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值