设计和训练人工智能模型的意义是什么?

前一篇:《人工智能模型训练技术,正则化!》

序言:人工智能模型的真正价值在于其实际应用,而不仅仅停留在理论阶段。本节将通过一个简单而常见的应用场景,展示如何将前面几节所设计和训练的模型应用于实际问题。我们将使用训练好的模型对句子进行分类,具体来说,识别社交平台上用户评论的类别。通过这样的技术,社交平台可以实时分析用户的情绪,迅速采取适当的响应措施,比如缓解冲突、提升用户体验,甚至优化平台的推荐算法。

接下来,我们将逐步引导您完成这一过程,从句子编码到模型预测结果的解读,展示如何将理论和实践结合起来,将人工智能的潜能充分释放。

使用模型对句子进行分类

现在你已经创建了模型,训练它,并通过优化解决了许多导致过拟合的问题,下一步就是运行模型并检查其结果。为此,你需要创建一个包含新句子的数组。例如:

sentences = [

"granny starting to fear spiders in the garden might be real",

"game of thrones season finale showing this sunday night",

"TensorFlow book will be a best seller"

]

然后使用与训练时创建词汇表时相同的 tokenizer 对这些句子进行编码。这一点很重要,因为只有使用相同的 tokenizer 才能确保使用的是模型训练时的词汇表和标记。

sequences = tokenizer.texts_to_sequences(sentences)

print(sequences)

打印输出的结果是上述句子的序列:

[[1, 81

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值