前一篇:《人工智能模型训练技术,正则化!》
序言:人工智能模型的真正价值在于其实际应用,而不仅仅停留在理论阶段。本节将通过一个简单而常见的应用场景,展示如何将前面几节所设计和训练的模型应用于实际问题。我们将使用训练好的模型对句子进行分类,具体来说,识别社交平台上用户评论的类别。通过这样的技术,社交平台可以实时分析用户的情绪,迅速采取适当的响应措施,比如缓解冲突、提升用户体验,甚至优化平台的推荐算法。
接下来,我们将逐步引导您完成这一过程,从句子编码到模型预测结果的解读,展示如何将理论和实践结合起来,将人工智能的潜能充分释放。
使用模型对句子进行分类
现在你已经创建了模型,训练它,并通过优化解决了许多导致过拟合的问题,下一步就是运行模型并检查其结果。为此,你需要创建一个包含新句子的数组。例如:
sentences = [
"granny starting to fear spiders in the garden might be real",
"game of thrones season finale showing this sunday night",
"TensorFlow book will be a best seller"
]
然后使用与训练时创建词汇表时相同的 tokenizer 对这些句子进行编码。这一点很重要,因为只有使用相同的 tokenizer 才能确保使用的是模型训练时的词汇表和标记。
sequences = tokenizer.texts_to_sequences(sentences)
print(sequences)
打印输出的结果是上述句子的序列:
[[1, 81