from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
iris =load_iris()
X=iris.data
Y=iris.target
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.3,random_state=0)
lr=LogisticRegression()
lr.fit(x_train,y_train)
print("模型训练集的准确率:%.3f"%lr.score(x_train,y_train))
print("模型测试集的准确率:%.3f"%lr.score(x_test,y_test))
target_names =['setosa','versicolor','virginica']
y_hat=lr.predict(x_test)
print(classification_report(y_test,y_hat,target_names=target_names))
结果:
模型训练集的准确率:0.981
模型测试集的准确率:0.978
precision recall f1-score support
setosa 1.00 1.00 1.00 16
versicolor 1.00 0.94 0.97 18
virginica 0.92 1.00 0.96 11
accuracy 0.98 45
macro avg 0.97 0.98 0.98 45
weighted avg 0.98 0.98 0.98 45
使用sklearn进行Iris数据集LogisticRegression分类
本文展示了如何使用Python的sklearn库对鸢尾花数据集进行训练和测试,使用LogisticRegression模型实现了98%左右的高精度,并提供了详细的分类报告。
4877

被折叠的 条评论
为什么被折叠?



