前言

作为经典PID控制器还存在PID参数整定的问题。通常我们可以采取人工整定的办法,但人工整定涉及到比较专业的知识,而且找到合适的参数本身也不是一件容易的事,所以人们探索了一系列适用于不同情况的PID参数自动整定算法。在这一篇中我们就来讨论基于继电反馈的PID参数自整定算法。

1、基本原理

若测出了系统的一阶模型,或得出了系统的临界比例增益Kc和振荡周期Tc,则可很容易地设计出PID调节器。

1.1、继电器反馈自整定过程

继电反馈自整定的基本思想是,在控制系统中设置两种模式:整定模式和调节模式。很显然,调节模式就是指我们正常使用的PID控制器,而整定模式就是我们用以整定PID参数的过程。  在整定模式下,我们将系统的操作转换为开关方式,即输出值在最大值和最小值之间周期性的转换。具体来说就是当测量值小于设定值时,我们将控制器的输出最大,而当测量值大于设定值之后我们又将输出值设为最小。这样被控系统聚会产生振动,经过至少3次过零检测,我们就会得到一个周期的振荡波型,从这个振荡波形中,我们可以提取到系统的特征参数,从而得到我们想要的PID参数。  在调节模式下,由系统的特征参数首先得出PID控制器的参数,然后使用此PID控制器对系统进行调节。PID参数继电反馈自整定的结构图如下:

PID参数自整定终极指南:基于继电反馈的智能调节算法详解_数据

从上图中我们可以知道,当需要PID参数整定时,开关置于继电环节,系统按继电反馈建立起稳定的极限环振荡后,就可以根据系系统响应特征确定PID参数。而当自整定计算完成后,我们可以控制开关置于PID调节器环节,这样系统进入正常PID控制过程。

1.2、继电器反馈自整定原理

为什么我们采用这一方式就可以确定PID控制器的参数呢?这是因为振荡波形的特性是由被控对象的特性决定的。在整定模式下,我们可以将整个控制系统的框图等效如下:

PID参数自整定终极指南:基于继电反馈的智能调节算法详解_数据_02

当我们根据测量值与设定值的对比关系来给出最大或最小输出时,基于被控对象的特性会产生一定频率和幅值的振荡波,从而我们就能确定系统的振荡频率ωc与临界增益Kc。比较常用的确定系统的振荡频率ωc与增益Kc的方法是描述函数法。所谓描述函数法,实际上是根据非线性环节输入信号与输出信号之间基波分量关系来进行近似的一种有效方法。  关于非线性特征的描述函数N(A)来说,就是当输入是正弦信号Asin(ωt)时,输出的基波分量Ysin(ωt+φ)对输入正弦量的复数比,即:

PID参数自整定终极指南:基于继电反馈的智能调节算法详解_预处理_03

其中A1、B1是输出Y(t)的傅立叶级数的一次项系数。  实际的带有回环的节点非线性环节特性的描述函数可以表示为:

PID参数自整定终极指南:基于继电反馈的智能调节算法详解_预处理_04

  公式中A为正弦波幅值,d为回环幅值,ε为回环宽度的一半。这里我们构建继电环节时,我们可以认为它是一个理想的继电环节,也就是说不带有回环,即ε=0,于是就有:

PID参数自整定终极指南:基于继电反馈的智能调节算法详解_最小值_05

在这里我们设被控对象的传递函数为如下形式:

PID参数自整定终极指南:基于继电反馈的智能调节算法详解_数据_06

  其中K为对象的增益,T为对象的时间常数,τ为对象的滞后时间。  根据前面继电回路结构框图,在这个简单的反馈系统中,闭环特征方程