Codeforces46D(Parking Lot)线段树区间查询

本文介绍了一种使用线段树解决停车场问题的方法,包括车辆进入寻找车位及离开的处理过程。通过延迟更新优化查询与更新操作,减少时间和空间开销。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/***********************************************
题目地址:
http://codeforces.com/problemset/problem/46/D

题目大意:
有一条长度为L的街道,有N个操作,操作有两种:
(1)"1 a",表示有一辆长度为a的车开进来想找停车位;
停车位必须满足与它前面的车距离至少为b,与后面的车距离至少为f;
如果能找到这样的停车位;输出这辆车的起始位置(且这个位置最小),否则输出-1;
(2)"2 a",表示第a个事件里进来停车的那辆车开出去了;

算法思想:
建立起点为-b,终点为L+f的线段树;
查找的时候,直接查找len+b+f的线段树就可以了;
其他地方类似于pku3667;
线段树的更新要用延迟更新;
在区间查询和更新的时候加入一个延迟节点;
每次要在下次查询或者更新到该区间时;
再把节点的信息传递到左右孩子的结点上;
这样更新大大减少了时间和空间上的开销;
************************************************/
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<climits>
#include<algorithm>
using namespace std;

#define L l,m,u<<1
#define R m+1,r,u<<1|1

const int N =100010;

struct darling
{
    int t,l;
} s[N];

struct car
{
    int ls,rs,ms;
    int flag;
} a[N*4];

void PushUp(int u,int m)//把当前结点的信息更新到父结点
{
    a[u].ls=a[u<<1].ls;
    a[u].rs=a[u<<1|1].rs;
    if(a[u].ls==m-(m>>1))
        a[u].ls+=a[u<<1|1].ls;
    if(a[u].rs==(m>>1))
        a[u].rs+=a[u<<1].rs;
    a[u].ms=max(a[u<<1|1].ls+a[u<<1].rs,max(a[u<<1].ms,a[u<<1|1].ms));
}

void PushDown(int u,int m)//把当前结点的信息更新给儿子结点
{
    if (a[u].flag!=-1)
    {
        a[u<<1].flag=a[u<<1|1].flag=a[u].flag;
        a[u<<1].ms=a[u<<1].ls=a[u<<1].rs=a[u].flag?0:m-(m>>1);
        a[u<<1|1].ms=a[u<<1|1].ls=a[u<<1|1].rs=a[u].flag?0:(m>>1);
        a[u].flag=-1;
    }
}

void build(int l,int r,int u)
{
    a[u].ms=a[u].ls=a[u].rs=r-l+1;
    a[u].flag=-1;
    if(l==r)
        return;
    int m=(l+r)>>1;
    build(L);
    build(R);
}

void update(int l1,int r1,int c,int l,int r,int u)//区间替换
{
    if(l1<=l&&r<=r1)
    {
        a[u].ms=a[u].ls=a[u].rs=c?0:r-l+1;
        a[u].flag=c;
        return;
    }
    PushDown(u,r-l+1);
    int m=(l+r)>>1;
    if(l1<=m)
        update(l1,r1,c,L);
    if(m<r1)
        update(l1,r1,c,R);
    PushUp(u,r-l+1);
}

int query(int w,int l,int r,int u)//查询满足条件的最左端点
{
    if(l==r)
        return l;
    PushDown(u,r-l+1);
    int m=(l+r)>>1;
    if(a[u<<1].ms>=w)//左儿子的ms值大于等于x,则到左儿子里去找;
        return query(w,L);
    else if(a[u<<1].rs+a[u<<1|1].ls>=w)//如果左儿子的rs加上右儿子的ls大于等于x,则直接返回左儿子的右端点减去左儿子的rs值;
        return m-a[u<<1].rs+1;
    return query(w,R);//否则到右儿子里去找;
}

int main()
{
   //freopen("C:\\Users\\Administrator\\Desktop\\kd.txt","r",stdin);
    int L1,b,f;
    while(~scanf("%d%d%d",&L1,&b,&f))
    {
        build(-b,L1+f,1);
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            int op,x;
            scanf("%d%d",&op,&x);
            if(op==1)
            {
                s[i].l=x;
                if(a[1].ms<x+b+f+1)
                {
                    puts("-1");
                    s[i].t=-1;
                }
                else
                {
                    int p=query(x+b+f,-b,L1+f,1);
                    printf("%d\n",p+b);
                    s[i].t=p+b;
                    s[i].l=x;
                    update(p+b,p+b+x-1,1,-b,L1+f,1);
                }
            }
            else
            {
                s[i].t=-1;
                update(s[x].t,s[x].t+s[x].l-1,0,-b,L1+f,1);
            }
        }
    }
    return 0;
}

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值