poj 2429 GCD & LCM Inverse(大数质因数分解+DFS)

Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 16973 Accepted: 3137

Description

Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b. But what about the inverse? That is: given GCD and LCM, finding a and b.

Input

The input contains multiple test cases, each of which contains two positive integers, the GCD and the LCM. You can assume that these two numbers are both less than 2^63.

Output

For each test case, output a and b in ascending order. If there are multiple solutions, output the pair with smallest a + b.

Sample Input

3 60

Sample Output

12 15


题意:

给你两个数n和m,让你求出一组a和b满足

①a<=b;②Gcd(a, b) = n;③Lcm(a, b) = m;④a+b的和尽可能的小


思路:

m/n = Lcm(a, b)/Gcd(a, b) = a/Gcd(a, b)*b/Gcd(a, b)

也就是要找到一对a, b满足

①a和b互质

②a+b尽可能小

③a*b = n

很显然a和b一定都是m/n的若干个质因子的乘积

Pollard_rho分解m/n的质因数,然后爆搜就行了,注意剪枝

#include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define LL long long
int t, cnt;
LL fat[101], val, ans, c, d;
LL Multi(LL a, LL b, LL mod)
{
	LL ans = 0;
	a %= mod;
	while(b)
	{
		if(b%2==1)  ans = (ans+a)%mod, b--;
		else  a = (a+a)%mod, b /= 2;
	}
	return ans;
}
LL Pow(LL a, LL b, LL mod)
{
	LL ans = 1;
	a %= mod;
	while(b)
	{
		if(b&1)  ans = Multi(ans, a, mod), b--;
		else  a = Multi(a, a, mod), b /= 2;
	}
	return ans;
}
LL Gcd(LL a, LL b)
{
	if(b==0)
		return a;
	return Gcd(b, a%b);
}
int Miller_Rabin(LL n)
{
	int i, j, k;
	LL a, x, y, mod;
	if(n==2)  return 1;
	if(n<2 || n%2==0)  return 0;
	k = 0, mod = n-1;
	while(mod%2==0)
	{
		k++;
		mod /= 2;
	}
	for(i=1;i<=10;i++)
	{
		a = rand()%(n-1)+1;
		x = Pow(a, mod, n);
		y = 0;
		for(j=1;j<=k;j++)
		{
			y = Multi(x, x, n);
			if(y==1 && x!=1 && x!=n-1)
				return 0;
			x = y;
		}
		if(y!=1)
			return 0;
	}
	return 1;
}
LL Divi(LL n)
{
	LL i, k, x, y, p, c;
	if(n==1)
		return 1;
	k = 2, p = 1;
	y = x = rand()%n, c = rand()%(n-1)+1;
	for(i=1;p==1;i++)
	{
		x = (Multi(x, x, n)+c)%n;
		p = x-y;
		if(p<0)
			p = -p;
		p = Gcd(n, p);
		if(i==k)
			y = x, k *= 2;
	}
	return p;
}

void Pollard_rho(LL n)
{
	LL p;
	if(n==1)
		return;
	if(Miller_Rabin(n))
		fat[++cnt] = n;
	else
	{
		p = Divi(n);
		Pollard_rho(n/p);
		Pollard_rho(p);
	}
}
void Sech(int x, LL now)
{
	if(x>=cnt+1 || x>sqrt(val)+1)
		return;
	if(now+val/now<ans)
	{
		c = now;
		d = val/now;
		ans = now+val/now;
	}
	Sech(x+1, now*fat[x]);
	Sech(x+1, now);
}
		
int main(void)
{
	int i, k;
	LL n, m, now;
	while(scanf("%lld%lld", &n, &m)!=EOF)
	{
		k = cnt = 0;
		val = m/n;
		Pollard_rho(val);
		sort(fat+1, fat+cnt+1);
		for(i=1;i<=cnt;i++)
		{
			if(fat[i]!=fat[i-1])
			{
				if(i!=1)
					fat[++k] = now;
				now = fat[i];
			}
			else
				now *= fat[i];
		}
		fat[++k] = now;
		cnt = k;
		ans = 1e18;
		Sech(1, 1);
		if(c>d)
			swap(c, d);
		printf("%lld %lld\n", c*n, d*n);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值