关于推荐系统(1)之基于内容的推荐

本文介绍了基于内容的推荐算法,包括物品表示、特征学习和推荐列表生成过程。重点讨论了如何将非结构化数据结构化,以及常用的最近邻方法、Rocchio算法和决策树算法,并分析了该算法的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    常用的推荐算法包括基于内容的推荐、协同过滤推荐、关联规则推荐、基于效用推荐、基于知识推荐和组合推荐。下面对几种推荐算法做简单总结:

1.基于内容的推荐:

CB是最早被使用的推荐算法,它的思想非常简单:根据用户过去喜欢的物品(本文统称为 item),为用户推荐和他过去喜欢的物品相似的物品。而关键就在于这里的物品相似性的度量,这才是算法运用过程中的核心。 CB最早主要是应用在信息检索系统当中,所以很多信息检索及信息过滤里的方法都能用于CB中。

CB的过程一般包括以下三步:

  • 物品表示(Item Representation):为每个item抽取出一些特征(也就是item的content了)来表示此item;

  • 特征学习(Profile Learning):利用一个用户过去喜欢(及不喜欢)的item的特征数据,来学习出此用户的喜好特征(profile);

  • 生成推荐列表(Recommendation Generation):通过比较上一步得到的用户profile与候选item的特征,为此用户推荐一组相关性最大的item。 

物品表示:

     真实应用中的item往往都会有一些可以描述它的属性。这些属性通常可以分为两种:结构化的(structured)属性与非结构化的(unstructured)属性。所谓结构化的属性就是这个属性的意义比较明确,其取值限定在某个范围;而非结构化的属性往往其意义不太明确,取值也没什么限制,不好直接使用。比如在交友网站上,item就是人,一个item会有结构化属性如身高、学历、籍贯等,也会有非结构化属性(如item自己写的交友宣言,博客内容等等)。对于结构化数据,我们自然可以拿来就用;但对于非结构化数据(如文章),我们往往要先把它转化为结构化数据后才能在模型里加以使用。真实场景中碰到最多的非结构化数据可能就是文章了(如个性化阅读中)。下面我们就详细介绍下如何把非结构化的一篇文章结构化。

特征学习:

      假设用户u已经对一些item给出了他的喜好判断,喜欢其中的一部分item,不喜欢其中的另一部分。那么,这一步要做的就是通过用户u过去的这些喜好判断,为他产生一个模型。有了这个模型,我们就可以根据此模型来判断用户u是否会喜欢一个新的item。所以,我们要解决的是一个典型的有监督分类问题,理论上机器学习里的分类算法都可以照搬进这里。

下面我们简单介绍下CB里常用的一些学习算法:


1。最近邻方法(简称KNN)

对于一个新的item,最近邻方法首先找用户u已经评判过并与此新item最相似的k个item,然后依据用户u对这k个item的喜好程度来判断其对此新item的喜好程度。这种做法和CF中的item-based kNN很相似,差别在于这里的item相似度是根据item的属性向量计算得到,而CF中是根据所有用户对item的评分计算得到。


对于这个方法,比较关键的可能就是如何通过item的属性向量计算item之间的两两相似度。对于结构化数据,相似度计算使用欧几里得距离;而如果使用向量空间模型(VSM)来表示item的话,则相似度计算可以使用cosine。

2.Rocchio算法

Rocchio算法是信息检索中处理相关反馈(Relevance Feedback)的一个著名算法。比如你在搜索引擎里搜“苹果”,当你最开始搜这个词时,搜索引擎不知道你到底是要能吃的水果,还是要不能吃的苹果,所以它往往会尽量呈现给你各种结果。当你看到这些结果后,你会点一些你觉得相关的结果(这就是所谓的相关反馈了)。然后如果你翻页查看第二页的结果时,搜索引擎可以通过你刚才给的相关反馈,修改你的查询向量取值,重新计算网页得分,把跟你刚才点击的结果相似的结果排前面。比如你最开始搜索“苹果”时,对应的查询向量是{“苹果” : 1}。而当你点击了一些与Mac、iPhone相关的结果后,搜索引擎会把你的查询向量修改为{“苹果” : 1, “Mac” : 0.8, “iPhone” : 0.7},通过这个新的查询向量,搜索引擎就能比较明确地知道你要找的是不能吃的苹果了。Rocchio算法的作用就是用来修改你的查询向量的:{“苹果” : 1} –> {“苹果” : 1, “Mac” : 0.8, “iPhone” : 0.7}。

在CB里,我们可以类似地使用Rocchio算法来获得用户u的profile640?wx_fmt=png

640?wx_fmt=png

其中 wj表示item j的属性,Ir与 Inr 分别表示已知的用户u喜欢与不喜欢的item集合;而 β 与 γ 为正负反馈的权重,它们的值由系统给定。

在获得640?wx_fmt=png后,对于某个给定的item j,我们可以使用640?wx_fmt=png640?wx_fmt=png的相似度来代表用户u对j的喜好度。

Rocchio算法的一个好处是640?wx_fmt=png可以根据用户的反馈实时更新,其更新代价很小。

3. 决策树算法

当item的属性较少而且是结构化属性时,决策树一般会是个好的选择。这种情况下决策树可以产生简单直观、容易让人理解的结果。而且我们可以把决策树的决策过程展示给用户u,告诉他为什么这些item会被推荐。但是如果item的属性较多,且都来源于非结构化数据(如item是文章),那么决策树的效果可能并不会很好。

推荐列表的生成:

CB的优点:

  • 用户之间的独立性(User Independence):既然每个用户的profile都是依据他本身对item的喜好获得的,自然就与他人的行为无关。而CF刚好相反,CF需要利用很多其他人的数据。CB的这种用户独立性带来的一个显著好处是别人不管对item如何作弊(比如利用多个账号把某个产品的排名刷上去)都不会影响到自己。

  • 好的可解释性(Transparency):如果需要向用户解释为什么推荐了这些产品给他,你只要告诉他这些产品有某某属性,这些属性跟你的品味很匹配等等。

  • 新的item可以立刻得到推荐(New Item Problem):只要一个新item加进item库,它就马上可以被推荐,被推荐的机会和老的item是一致的。而CF对于新item就很无奈,只有当此新item被某些用户喜欢过(或打过分),它才可能被推荐给其他用户。所以,如果一个纯CF的推荐系统,新加进来的item就永远不会被推荐:(.

CB的缺点:

  • item的特征抽取一般很难(Limited Content Analysis):如果系统中的item是文档(如个性化阅读中),那么我们现在可以比较容易地使用信息检索里的方法来“比较精确地”抽取出item的特征。但很多情况下我们很难从item中抽取出准确刻画item的特征,比如电影推荐中item是电影,社会化网络推荐中item是人,这些item属性都不好抽。其实,几乎在所有实际情况中我们抽取的item特征都仅能代表item的一些方面,不可能代表item的所有方面。这样带来的一个问题就是可能从两个item抽取出来的特征完全相同,这种情况下CB就完全无法区分这两个item了。比如如果只能从电影里抽取出演员、导演,那么两部有相同演员和导演的电影对于CB来说就完全不可区分了。

  • 无法挖掘出用户的潜在兴趣(Over-specialization):既然CB的推荐只依赖于用户过去对某些item的喜好,它产生的推荐也都会和用户过去喜欢的item相似。如果一个人以前只看与推荐有关的文章,那CB只会给他推荐更多与推荐相关的文章,它不会知道用户可能还喜欢数码。

  • 无法为新用户产生推荐(New User Problem):新用户没有喜好历史,自然无法获得他的profile,所以也就无法为他产生推荐了。当然,这个问题CF也有。

CB应该算是第一代的个性化应用中最流行的推荐算法了。但由于它本身具有某些很难解决的缺点(如上面介绍的第1点),再加上在大多数情况下其精度都不是最好的,目前大部分的推荐系统都是以其他算法为主(如CF),而辅以CB以解决主算法在某些情况下的不精确性(如解决新item问题)。但CB的作用是不可否认的,只要具体应用中有可用的属性,那么基本都能在系统里看到CB的影子。组合CB和其他推荐算法的方法很多(我很久以后会写一篇博文详细介绍之),最常用的可能是用CB来过滤其他算法的候选集,把一些不太合适的候选(比如不要给小孩推荐偏成人的书籍)去掉。







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值