Pythagorean Triples

Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theorem. It appeared, that there are triples of positive integers such that you can construct a right triangle with segments of lengths corresponding to triple. Such triples are called Pythagorean triples.

For example, triples (3, 4, 5), (5, 12, 13) and (6, 8, 10) are Pythagorean triples.

Here Katya wondered if she can specify the length of some side of right triangle and find any Pythagorean triple corresponding to such length? Note that the side which length is specified can be a cathetus as well as hypotenuse.

Katya had no problems with completing this task. Will you do the same?

Input
The only line of the input contains single integer n (1 ≤ n ≤ 109) — the length of some side of a right triangle.

Output
Print two integers m and k (1 ≤ m, k ≤ 1018), such that n, m and k form a Pythagorean triple, in the only line.

In case if there is no any Pythagorean triple containing integer n, print  - 1 in the only line. If there are many answers, print any of them.

Example
Input
3
Output
4 5
Input
6
Output
8 10
Input
1
Output
-1
Input
17
Output
144 145
Input
67
Output
2244 2245
Note
                         

Illustration for the first sample.



这题......想了好久,也没想出来

答案就是:给出最小一条边a,其他两边分别是:1°    a是偶数  b=n^2/4-1     c=b+2

                                                                                      2°    a是奇数  b=(n^2-1)/2   c=b+1

.....

恩,就是这样,伟大的数学~

AC代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<stack>
#include<set>
#include<queue>
#include<cmath>
#include<cstdlib>
using namespace std;
#define INF 999999
typedef long long ll;
const int maxn=1500;
long long int n,m,k;

int main()
{
    scanf("%lld",&n);
    if(n%2==0){
        m=((n/2)*(n/2))-1;
        k=m+2;
    }
    else{
        m=((n*n)-1)/2;
        k=m+1;
    }
    if(m==0||k==0)
        printf("-1\n");
    else
        printf("%lld %lld\n",m,k);
    return 0;
}


基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的P
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值