Piggy-Bank (完全背包 动态规划)

本文介绍了一种通过已知存钱罐的总重量及其内含硬币类型来估算其最低金额的方法。这是一个典型完全背包问题的应用实例,文章提供了解决方案的详细步骤,并附带AC代码。
Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams.
Output
Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.".
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.

This is impossible.


题意:不知道存钱罐里有多少钱,现在给你存的钱的总重量(可求得)及一些货币的面值和重量,让你计算出里面至少存了多少钱,如果给出的数据不能计算出,输出This is impossible.

思路:典型的完全背包问题,给出价值和重量,数量可任选。因为此题求的是最少的钱,所以用min,dp数组开始赋一个较大的值,然后模板套用。


AC代码:

#include <string.h>
#include <stdio.h>
#include <algorithm>
using namespace std;

int f[1000005];

int main()
{
    int t;
    int wa,wb,m;
    int n,val[505],wei[505],i,j;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&wa,&wb);
        m = wb-wa;
        scanf("%d",&n);
        for(i = 0;i<n;i++)
        scanf("%d%d",&val[i],&wei[i]);
        for(i = 0;i<=m;i++)
            f[i] = 10000000;
        f[0] = 0;   //f[0]开始是0,容量为0的时候价值为0
        for(i = 0;i<n;i++)
            for(j = wei[i];j<=m;j++)       //从i物品的重量到总重量
                f[j] = min(f[j],f[j-wei[i]]+val[i]);
        if(f[m] == 10000000)
            printf("This is impossible.\n");
        else
            printf("The minimum amount of money in the piggy-bank is %d.\n",f[m]);
    }
    return 0;
}


内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
### 问题描述 SWUST OJ平台上的Piggy-Bank问题通常涉及动态规划中的完全背包问题。题目大意是:给定一个存钱罐的空重量 $ e $ 和满重量 $ f $,以及若干种硬币的价值和重量,每种硬币的数量不限。要求用这些硬币恰好填满存钱罐(总重量为 $ f - e $),使得总价值最小。如果无法恰好填满,则输出“This is impossible.”。 ### 解法分析 此问题是一个典型的**完全背包问题**,其中每个物品可以被无限次使用。为了求解最小价值,可以采用动态规划的方法。 #### 动态规划思路 1. **状态定义**: - 定义数组 `ans[j]` 表示当总重量为 $ j $ 时,所需的最小价值。 - 初始化时,`ans[0] = 0`,其余位置初始化为一个较大的值(如 `inf`),表示无法达到该重量。 2. **状态转移**: - 对于每个硬币,重量为 `weight[i]`,价值为 `value[i]`。 - 遍历重量范围 $ j $ 从 `weight[i]` 到最大重量 $ f-e $,更新 `ans[j]` 的值: $$ ans[j] = \min(ans[j], ans[j - weight[i]] + value[i]) $$ 3. **最终结果**: - 如果 `ans[f-e]` 仍为 `inf`,说明无法恰好填满存钱罐;否则输出最小价值。 #### 示例代码 以下是该问题的完整解法代码实现: ```cpp #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; #define inf 0x7fffff int value[508], weight[508], ans[10050]; int main() { int n; scanf("%d", &n); while (n--) { int e, f, t; scanf("%d%d%d", &e, &f, &t); for (int i = 0; i <= f; i++) { ans[i] = inf; } for (int i = 0; i < t; i++) { scanf("%d%d", &value[i], &weight[i]); } ans[0] = 0; for (int i = 0; i < t; i++) { for (int j = weight[i]; j <= f - e; j++) { ans[j] = min(ans[j], ans[j - weight[i]] + value[i]); } } if (ans[f - e] == inf) { printf("This is impossible.\n"); } else { printf("The minimum amount of money in the piggy-bank is %d.\n", ans[f - e]); } } } ``` #### 代码解析 - **初始化**:`ans` 数组初始化为一个极大值 `inf`,表示无法达到的状态。 - **输入处理**:循环读取多组测试数据,每组数据包括空重量 $ e $、满重量 $ f $ 和硬币种类数 $ t $。 - **动态规划处理**:通过两层循环遍历硬币和重量,更新动态规划数组。 - **结果判断**:根据 `ans[f-e]` 是否为 `inf` 判断是否可以填满存钱罐。 ### 算法复杂度 - **时间复杂度**:$ O(T \cdot W) $,其中 $ T $ 是硬币种类数,$ W $ 是目标重量 $ f-e $。 - **空间复杂度**:$ O(W) $,仅使用一维数组存储状态。 ### 相关问题 1. 如何将完全背包问题转换为动态规划解法? 2. 在动态规划中如何处理最小值问题? 3. 如何优化完全背包问题的空间复杂度? 4. 什么是完全背包问题与0-1背包问题的区别? 5. 如何处理无法达到目标状态的情况?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值