Ultra-QuickSort
| Time Limit: 7000MS | Memory Limit: 65536K | |
| Total Submissions: 75430 | Accepted: 28242 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
struct node
{
int w,i;
};
int a[500001],c[500001],n;
node x[500001];
bool cmp(node x,node y)
{
return x.w<y.w;
}
int lowbit(int x)
{
return x&(-x);
}
int sum(int pos)
{
int s=0;
while(pos>0)
{
s+=c[pos];
pos-=lowbit(pos);
}
return s;
}
void update(int pos,int num)
{
while(pos<=n)
{
c[pos]+=num;
pos+=lowbit(pos);
}
}
int main()
{
while(~scanf("%d",&n))
{
if(n==0)
break;
for(int i=1;i<=n;i++)
{
scanf("%d",&x[i].w);
x[i].i=i;
}
sort(x+1,x+1+n,cmp);
for(int i=1;i<=n;i++)
a[x[i].i]=i;
memset(c,0,sizeof(c));
long long ans=0;
for(int i=1;i<=n;i++)
{
update(a[i],1);
ans+=i-sum(a[i]);
}
printf("%lld\n",ans);
}
return 0;
}
本文深入探讨了Ultra-QuickSort排序算法的工作原理,详细解释了如何通过交换相邻元素将序列排序为升序的过程。文章提供了算法的具体实现,包括输入序列的处理、排序操作计数及输出结果的方法。此外,还介绍了使用树状数组进行前缀和查询以优化算法效率的技术。
274

被折叠的 条评论
为什么被折叠?



