从不均匀性角度浅析AB实验 | 京东云技术团队

文章探讨了AB实验在进行用户分流时遇到的人数比例不均匀、人群素质不均匀及实验间影响不均匀等问题。通过哈希算法进行用户分流,但在大流量下才可能接近均匀。为了处理人群素质不均匀,提出了AA实验的方法。同时,文章介绍了正交垂直域的概念,以降低实验间的相互影响,提高实验准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:京东零售 路卫强

本篇的目的是从三个不均匀性的角度,对AB实验进行一个认知的普及,最终着重讲述AB实验的一个普遍的问题,即实验准确度问题。

一、AB实验场景

在首页中,我们是用红色基调还是绿色基调,是采用门店小列表外+商品feed(左图),还是采用门店大列表囊括商品feed(右图),哪种更吸引用户浏览下单呢,简单来处理让50%的用户看到左图效果,让50%的用户看到右图效果,最终通过点击量,单量等指标进行比对得出结论,这是典型的AB实验场景

二、AB实验的定义

A/B实验就是针对想迭代的产品功能,提供两种不同的备选解决方案,然后让一部分用户使用方案A,另一部分用户使用方案B,最终通过实验数据对比来确定最优方案。

从定义里我们就可以看出来,最直观的一个概念,就是用户的分流,此时就涉及到分流人数是否均匀的问题,即人数比例的均匀性。

三、AB中的三个不均匀

1、人数比例的不均匀

目前AB实验的分流核心算法是通过的哈希算法,假设我们按用户名做为分流因子,使用murmurhash算法,以100桶制为例,确定一个人的位置的算法就是

//将用户名通过hash算法计算出一个整数
int hashNum = MurmurHash3.murmurhash3_x86_32(useN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值