Daxia在2016年5月期间去瑞士度蜜月,顺便拜访了Wzc,Wzc给他出了一个问题:
Wzc给Daxia等差数列A(0),告诉Daxia首项a和公差d;
首先让Daxia求出数列A(0)前n项和,得到新数列A(1);
然后让Daxia求出数列A(1)前n项和,得到新数列A(2);
接着让Daxia求出数列A(2)前n项和,得到新数列A(3);
…
最后让Daxia求出数列A(m-1)前n项和,得到新数列A(m);
Input
测试包含多组数据,每组一行,包含四个正整数a(0<=a<=100),d(0<d<=100),m(0<m<=1000),i(1<=i<=1000000000).
Output
每组数据输出一行整数,数列A(m)的第i项mod1000000007的值.
Sample Input
1 1 3 4
Sample Output
35
Hint
A(0): 1 2 3 4
A(1): 1 3 6 10
A(2): 1 4 10 20
A(3): 1 5 15 35
So the 4th of A(3) is 35.
分析:第一反应,构造矩阵矩阵快速幂,被时间卡死。
根据等差数列通项公式进行推导,寻找规律。
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define ll long long int
//lucas 上限为p为1e5左右
const ll p = 1e9 + 7;
ll qkm_mod(ll a, ll b, ll p)
{
ll res = 1;
while (b)
{
if (b & 1)
{
(res = res*a) %= p;
}
(a = a*a) %= p;
b >>= 1;
}
return res;
}
ll comb(ll a, ll b, ll p)
{
if (a < b)
return 0;
if (a == b)
return 1;
if (b > a - b)
a - b;
ll ans = 1, ca = 1, cb = 1;
for (ll i = 0; i < b; i++)
{
ca = (ca*(a - i)) % p;
cb = (cb*(b - i)) % p;
}
ans = (ca*qkm_mod(cb, p - 2, p)) % p;
return ans;
}
ll lucas(ll n, ll m, ll p)
{
ll ans = 1;
while (n&&m&&ans)
{
ans = (ans*comb(n%p, m%p, p)) % p;
n /= p;
m /= p;
}
return ans;
}
int main()
{
ll a, d, m, n;
while (~scanf("%lld %lld %lld %lld", &a, &d, &m, &n))
{
ll ans;
(ans = lucas(n + m - 1, m, p)*a) %= p;
(ans += lucas(n + m - 1, m + 1, p)*d) %= p;
printf("%lld\n", ans);
}
return 0;
}