Exponentiation
Description
Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation of the national debt is a taxing experience for many computer systems.
This problem requires that you write a program to compute the exact value of Rn where R is a real number ( 0.0 < R < 99.999 ) and n is an integer such that 0 < n <= 25.
Input
The input will consist of a set of pairs of values for R and n. The R value will occupy columns 1 through 6, and the n value will be in columns 8 and 9.
Output
The output will consist of one line for each line of input giving the exact value of R^n. Leading zeros should be suppressed in the output. Insignificant trailing zeros must not be printed. Don’t print the decimal point if the result is an integer.
Sample Output
548815620517731830194541.899025343415715973535967221869852721
.00000005148554641076956121994511276767154838481760200726351203835429763013462401
43992025569.928573701266488041146654993318703707511666295476720493953024
29448126.764121021618164430206909037173276672
90429072743629540498.107596019456651774561044010001
1.126825030131969720661201
解析
实数 R 的范围到 100(最多占据 5 位),指数 n 的范围到 25,因此会有至多 5 ∗ 25 = 125 5*25=125 5∗25=125 位,所以用模拟来做。
可以注意到,给定 R 和 n 后,小数点的位置是确定的,因此转换成大整数乘法处理,最后添加小数点的位置。
此题需要注意特殊情况极多,我是参考评论区补充了很多特例才过的。但是 ac 并不代表代码没问题,边缘 case 还是很多的。
一些 case 参考
> .00001 1
> .12345 1
> 0001.1 1
> 1.1000 1
> 10.000 1
> 000.10 1
> 000000 1
> 000.00 1
> .00000 0
> 000010 1
> 000.10 1
> 0000.1 1
> 00.111 1
> 0.0001 1
> 0.0001 3
> 0.0010 1
> 0.0010 3
> 0.0100 1
> 0.0100 3
> 0.1000 1
> 0.1000 3
> 1.0000 1
> 1.0000 3
> 1.0001 1
> 1.0001 3
> 1.0010 1
> 1.0010 3
> 1.0100 1
> 1.0100 3
> 1.1000 1
> 1.1000 3
> 10.000 1
> 10.000 3
> 10.001 1
> 10.001 3
> 10.010 1
> 10.010 3
> 10.100 1
> 10.100 3
> 99.000 1
> 99.000 3
> 99.001 1
> 99.001 3
> 99.010 1
> 99.010 3
> 99.100 1
> 99.100 3
> 99.998 1
> 99.998 3
代码
#include <iostream>
#include <string>
#include <vector>
#include <cstdio>
using namespace std;
const int num = 200;
vector<int> multi(vector<int> A, int n)
{
vector<int> C(num, 0);
if(n == 1) return A;
vector<int> B = A;
int baseLen = A.size();
int lenA = baseLen;
int lenB = lenA;
for (int i = 0; i < n - 1; i++)
{
int t;
C.assign(num, 0);
lenA = baseLen * (i + 1);
for (int j = 0; j < lenB; j++)
{
for (int k = 0; k < lenA; k++)
{
t = C[j + k] + B[j] * A[k];
C[j + k] = t % 10;
C[j + k + 1] += t / 10;
}
}
A = C;
}
return C;
}
int main()
{
string s;
int n;
vector<int> base;
while (cin >> s >> n)
{
base.clear();
int decimalPoint;
int sLength = s.size();
int decimalFlag = 0;
for (int i = sLength - 1; i >= 0; i--)
{
if (s[i] != '.'){
base.push_back(s[i] - '0');
} else {
decimalFlag = 1;
decimalPoint = sLength - i - 1;
}
}
vector<int> res = multi(base, n);
int resLength = base.size() * n;
decimalPoint *= n;
int zeroFlag = 1;
if (n == 0)
{
cout << 1 << endl;
continue;
}
else
{
for (int i = resLength - 1; i >= decimalPoint; i--)
{
if (zeroFlag && res[i] == 0)
{
continue;
}
zeroFlag = 0;
cout << res[i];
}
if(decimalFlag == 0){
if(zeroFlag == 1) cout<<0;
cout<<endl;
continue;
}
int endPoint = 0;
for (endPoint = 0; endPoint < decimalPoint; endPoint++)
{
if (res[endPoint] == 0)
continue;
else
break;
}
if(zeroFlag == 1 && endPoint == decimalPoint){
cout<<0<<endl;
continue;
}
if( decimalPoint - 1 >= endPoint) {
cout << '.';
}
for (int i = decimalPoint - 1; i >= endPoint; i--)
{
cout << res[i];
}
cout<<endl;
}
}
return 0;
}