ret:
<class ‘tuple’>: (
[5, 0, 27, 111, 179, 102, 25, 30, 35, 210],
[0.8058252427184466, 0.8155774395702775, 0.8355314197051978, 0.8328530259365994, 0.8365384615384616, 0.8371313672922251, 0.841897233201581, 0.8332239001969797, 0.8321358589157414, 0.8358306188925081],
[0.5251752708731676, 0.7119184193753983, 0.8215423836838751, 0.8846398980242193, 0.9279796048438496, 0.9509241555130656, 0.9674952198852772, 0.9706819630337795, 0.975780752071383, 0.9783301465901848])
ret_imp:
<class ‘tuple’>: (
[9, 2, 0, 7, 77, 185, 111, 65, 49, 64],
[0.9214092140921409, 0.9412780656303973, 0.9245810055865922, 0.9315403422982885, 0.9356913183279743, 0.931615460852329, 0.9270142180094787, 0.9283088235294118, 0.9283185840707965, 0.9242685025817556],
[0.23518164435946462, 0.3690248565965583, 0.45634161886551944, 0.521351179094965, 0.5946462715105163, 0.6430847673677501, 0.6724028043339707, 0.6934353091140854, 0.7202039515615042, 0.7405991077119184])
z:
5:<class ‘list’>: [5, 7] [0.5640771895101435, 0.9523809523809523] [0.5118, 0.5118]
0: <class ‘list’>: [5, 8] [0.4397854705021941, 1.0] [0.2068, 0.1872]
27: <class ‘list’>: [10, 3] [0.4596322941646683, 1.0] [0.6333, 0.1792]
111: <class ‘list’>: [7, 5] [0.5189274447949527, 1.0] [0.2812, 0.0759]
179:<class ‘list’>: [5, 7, 9] [0.439581351094196, 0.723404255319149, 1.0] [0.0797, 0.0645, 0.0624]
102:<class ‘list’>: [8, 5] [0.440279860069965, 1.0] [0.8819, 0.0983]
25 : <class ‘list’>: [8] [0.9805194805194806] [0.0631]
30 : <class ‘list’>: [1, 0] [0.5989847715736041, 1.0] [0.6589, 0.1936]
35: <class ‘list’>: [8, 0] [0.440279860069965, 1.0] [0.8819, 0.1819]
210: <class ‘list’>: [8, 4] [0.5604395604395604, 1.0] [0.8819, 0.15]
imp:
9:<class ‘dict’>: {‘feature’: [3, 8], ‘coverage’: [0.2193877551020408], ‘precision’: [0.9156976744186046]}
2: <class ‘dict’>: {‘feature’: [3, 2], ‘coverage’: [0.14094387755102042], ‘precision’: [0.9864253393665159]}
0: <class ‘dict’>: {‘feature’: [3, 8], ‘coverage’: [0.09566326530612244], ‘precision’: [0.8733333333333333]}
7: <class ‘dict’>: {‘feature’: [3, 4], ‘coverage’: [0.11734693877551021], ‘precision’: [0.9836956521739131]}
77: <class ‘dict’>: {‘feature’: [3, 4], ‘coverage’: [0.12053571428571429], ‘precision’: [0.9629629629629629]}
185: <class ‘dict’>: {‘feature’: [3, 4], ‘coverage’: [0.07334183673469388], ‘precision’: [0.8956521739130435]}
111: <class ‘dict’>: {‘feature’: [3, 4], ‘coverage’: [0.03635204081632653], ‘precision’: [0.8245614035087719]}
65 : <class ‘dict’>: {‘feature’: [3, 8], ‘coverage’: [0.022321428571428572], ‘precision’: [0.9142857142857143]}
49 : <class ‘dict’>: {‘feature’: [3, 4], ‘coverage’: [0.02295918367346939], ‘precision’: [0.8333333333333334]}
64: <class ‘dict’>: {‘feature’: [3, 8], ‘coverage’: [0.021045918367346938], ‘precision’: [1.0]}
算法预测与特征重要性分析
550

被折叠的 条评论
为什么被折叠?



