碾转相除求最大公约数 最大公倍数

介绍辗转相除法(欧几里得算法),一种高效求解两个整数最大公约数的方法,并通过实例演示计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 
在数学中,辗转相除法,又称欧几里得算法,是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题yⅠ和Ⅱ)中,而在中国则可以追溯至东汉出现的《九章算数》。
两个整数的最大公约数是能够同时整除它们的最大的正整数。辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的相除余数的最大公约数。例如,252和105的最大公约数是21(252 = 21 × 12;105 = 21 × 5);因为252 / 105 = 2余42,所以105和42的最大公约数也是21。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至余数变为零。这时的除数就是所求的两个数的最大公约数。由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如21 = 5 × 105 + (−2) × 252。这个重要的等式叫做贝祖等式。
比如求10000和115的最大公约数,不用把因数一个一个找出来,只要按以下做法就行了:
15000÷115=130……50
115÷50=2……15
50÷15=3……5
15÷5=3
它们的公约数是5.

求a和b的最大公倍数
a*b/最大公约数
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值