神经网络(Neural Network)是一种模拟人脑神经系统的计算模型,由大量相互连接的神经元(节点)组成,广泛应用于深度学习和机器学习领域。以下是神经网络的基本结构及关键组成部分。
1. 神经网络的基本组成
一个神经网络通常由以下部分组成:
-
输入层(Input Layer):
- 接收输入数据,每个节点代表一个输入特征。
- 输入数据的维度决定输入层的神经元个数。
-
隐藏层(Hidden Layers):
- 位于输入层和输出层之间。
- 包含多个神经元,负责学习和提取特征。
- 可以有多个隐藏层,层数和每层的神经元数量决定网络的复杂度。
-
输出层(Output Layer):
- 生成最终的输出。
- 输出神经元的数量取决于任务类型:
- 回归任务:一个输出神经元。
- 二分类任务:一个神经元(通常配合 Sigmoid 激活函数)。
- 多分类任务:输出神经元数量等于类别数量(通常配合 Softmax 激活函数)。
-
连接权重和偏置(Weight