【机器学习】机器学习的基本分类-监督学习-决策树-ID3 算法

ID3(Iterative Dichotomiser 3)是决策树的一种构造算法,由 Ross Quinlan 在 1986 年提出。它主要用于分类问题,通过信息增益选择特征来构建决策树。ID3 假设数据是离散型特征,且不支持连续型数据。


1. 核心思想

  1. 划分标准

    • 使用 信息增益(Information Gain)作为特征选择的标准。
    • 选择信息增益最大的特征进行分裂。
  2. 递归构造

    • 从根节点开始,每次根据信息增益选择特征,生成子节点。
    • 对每个子节点重复这一过程,直到满足停止条件(例如数据不可再分,或者所有样本类别相同)。

2. 信息增益

信息增益基于**信息熵(Entropy)**的概念:

信息熵的定义

信息熵衡量数据集的不确定性:

H(D) = - \sum_{i=1}^C p_i \log_2(p_i)

  • D:数据集。
  • C:类别数。
  • p_i:数据集中属于第 i 类的概率。
条件熵

划分数据集 D 后的条件熵为:

H(D|A) = \sum_{v \in \text{Values}(A)} \frac{|D_v|}{|D|} H(D_v)

  • A:划分特征。
  • D_v​&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值