1、题目描述
从上往下打印出二叉树的每个节点,同层节点从左至右打印。
2、代码详解
双端队列
相当于按层遍历, 中间需要队列做转存,引入一个队列即可。
推广:有向图的广度优先遍历也是基于队列的。
# -*- coding:utf-8 -*-
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
# 返回从上到下每个节点值列表,例:[1,2,3]
def PrintFromTopToBottom(self, root):
queue = [] # 双端队列,存储TreeNode
result = [] # 存储弹出的队头值
if root == None:
return []
queue.append(root)
while len(queue) > 0:
queueHead = queue.pop(0) # 弹出队首的树节点(出队)
result.append(queueHead.val) # 存储被弹出树节点的值
# 左右孩子节点入队
if queueHead.left:
queue.append(queueHead.left)
if queueHead.right:
queue.append(queueHead.right)
return result
pNode1 = TreeNode(8)
pNode2 = TreeNode(6)
pNode3 = TreeNode(10)
pNode4 = TreeNode(5)
pNode5 = TreeNode(7)
pNode6 = TreeNode(9)
pNode7 = TreeNode(11)
pNode1.left = pNode2
pNode1.right = pNode3
pNode2.left = pNode4
pNode2.right = pNode5
pNode3.left = pNode6
pNode3.right = pNode7
S = Solution()
print(S.PrintFromTopToBottom(pNode1))
3、进阶:LeetCode102. 二叉树的层序遍历(二维list输出)
与剑指offer([8, 6, 10, 5, 7, 9, 11])的区别是
输出:[[8], [6, 10], [5, 7, 9, 11]]
加入两个变量:level_size和current_level,便可以按层分割
# Definition for a binary tree node.
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution(object):
def levelOrder(self, root):
"""
:type root: TreeNode
:rtype: List[List[int]]
"""
queue = [] # 双端队列,存储TreeNode
if root == None:
return []
queue.append(root)
result = [] # 存储弹出的队头值
while len(queue) > 0:
level_size = len(queue) # 每层
current_level = [] # 当前层:一层存在一个list中,使用双端队列方便从左或从右添加元素
for _ in range(level_size): # 仅pop(0)出当前层的
queue_head = queue.pop(0) # 弹出队首的树节点(出队)
current_level.append(queue_head.val) # 存储被弹出树节点的值
# 左右孩子节点入队
if queue_head.left:
queue.append(queue_head.left)
if queue_head.right:
queue.append(queue_head.right)
result.append(current_level)
return result
def main():
# 构建一个简单的二叉树
# 3
# / \
# 9 20
# / \
# 15 7
root = TreeNode(3)
root.left = TreeNode(9)
root.right = TreeNode(20)
root.right.left = TreeNode(15)
root.right.right = TreeNode(7)
s = Solution()
result = s.levelOrder(root)
print(result)
if __name__ == "__main__":
main()
另附一种模板写法
复杂度分析
记树上所有节点的个数为 n。
时间复杂度:每个点进队出队各一次,故渐进时间复杂度为 O(n)。
空间复杂度:队列中元素的个数不超过 n 个,故渐进空间复杂度为 O(n)。