Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
Solution:
Code:
<span style="font-size:14px;">class Solution {
public:
vector<vector<int> > threeSum(vector<int> &num) {
const int length = num.size();
vector<vector<int> > results;
sort(num.begin(), num.end());
for (int i = 0; i < length-2; ++i) {
int m = i+1, n = length-1;
while (m < n) {
if (num[i]+num[m]+num[n] == 0) {
vector<int> result;
result.push_back(num[i]);
result.push_back(num[m]);
result.push_back(num[n]);
results.push_back(result);
while (m+1 < n && num[m+1] == num[m]) ++m;
++m;
while (n-1 > m && num[n-1] == num[n]) --n;
--n;
} else if (num[i]+num[m]+num[n] < 0) {
while (m+1 < n && num[m+1] == num[m]) ++m;
++m;
} else if (num[i]+num[m]+num[n] > 0) {
while (n-1 > m && num[n-1] == num[n]) --n;
--n;
}
}
while (i+1 < length-2 && num[i+1] == num[i]) ++i;
}
return results;
}
};</span>