lintcode2-2. 尾部的零

本文介绍了一种高效算法,用于计算n!尾部零的数量。通过统计因子5的倍数来实现,确保了O(logN)的时间复杂度。

设计一个算法,计算出n阶乘中尾部零的个数

样例

11! = 39916800,因此应该返回 2

挑战 

O(logN)的时间复杂度



这种直接数有多少个0的方法,即包含多少个5,时间复杂度大于O(n)在时间上是通不过的,会提示超时。

class Solution {
public:
    /*
     * @param n: A long integer
     * @return: An integer, denote the number of trailing zeros in n!
     */
    long long trailingZeros(long long n) {
        // write your code here, try to do it without arithmetic operators.
        long long count=1;
        long long other_count=0;
        while(count*5<=n){
            
            long long temp_num=count;
            while(temp_num%5==0){
                other_count++;
                temp_num=temp_num/5;
            }
            count++;
            
        }
            
        return count+other_count-1;
    }
};

我们采用另一种思路,先统计可以整除5的个数,在统计整除25,125······,时间复杂度是O(log(n)),可以AC:

class Solution {
public:
    /*
     * @param n: A long integer
     * @return: An integer, denote the number of trailing zeros in n!
     */
    long long trailingZeros(long long n) {
        // write your code here, try to do it without arithmetic operators.
        long long five_times=1;
        long long count=0;

        while(five_times*5<=n){
            five_times=five_times*5;
            count+=n/five_times;
            
        }
            
        return count;
    }
};


// return true if pRtpPacket is within the latency tolerance (not much earlier than current head) BOOL withinLatencyTolerance(PJitterBuffer pJitterBuffer, PRtpPacket pRtpPacket) { BOOL retVal = FALSE; UINT32 minimumTimestamp = 0; // Simple check, if we're at or past the tail timestamp then we're always within latency tolerance. // overflow is checked earlier if (tailTimestampCheck(pJitterBuffer, pRtpPacket) || pJitterBuffer->tailTimestamp == pRtpPacket->header.timestamp) { retVal = TRUE; } else { // Is our tail current less than our head due to timestamp overflow? if (pJitterBuffer->timestampOverFlowState) { // calculate max-latency across the overflow boundry without triggering underflow if (pJitterBuffer->tailTimestamp < pJitterBuffer->maxLatency) { minimumTimestamp = MAX_RTP_TIMESTAMP - (pJitterBuffer->maxLatency - pJitterBuffer->tailTimestamp); } // Is the packet within the current range or is it a new head/tail if (pRtpPacket->header.timestamp < pJitterBuffer->tailTimestamp || pRtpPacket->header.timestamp > pJitterBuffer->headTimestamp) { // The packet is within the current range retVal = TRUE; } // The only remaining option is that timestamp must be before headTimestamp else if (pRtpPacket->header.timestamp >= minimumTimestamp) { retVal = TRUE; } } else { if ((pRtpPacket->header.timestamp < pJitterBuffer->maxLatency && pJitterBuffer->tailTimestamp <= pJitterBuffer->maxLatency) || pRtpPacket->header.timestamp >= pJitterBuffer->tailTimestamp - pJitterBuffer->maxLatency) { retVal = TRUE; } } } return retVal; }
最新发布
09-12
以下是对 `withinLatencyTolerance` 函数代码逻辑的详细解释: ```c // return true if pRtpPacket is within the latency tolerance (not much earlier than current head) BOOL withinLatencyTolerance(PJitterBuffer pJitterBuffer, PRtpPacket pRtpPacket) { BOOL retVal = FALSE; UINT32 minimumTimestamp = 0; // Simple check, if we're at or past the tail timestamp then we're always within latency tolerance. // overflow is checked earlier if (tailTimestampCheck(pJitterBuffer, pRtpPacket) || pJitterBuffer->tailTimestamp == pRtpPacket->header.timestamp) { retVal = TRUE; } else { // Is our tail current less than our head due to timestamp overflow? if (pJitterBuffer->timestampOverFlowState) { // calculate max-latency across the overflow boundry without triggering underflow if (pJitterBuffer->tailTimestamp < pJitterBuffer->maxLatency) { minimumTimestamp = MAX_RTP_TIMESTAMP - (pJitterBuffer->maxLatency - pJitterBuffer->tailTimestamp); } // Is the packet within the current range or is it a new head/tail if (pRtpPacket->header.timestamp < pJitterBuffer->tailTimestamp || pRtpPacket->header.timestamp > pJitterBuffer->headTimestamp) { // The packet is within the current range retVal = TRUE; } // The only remaining option is that timestamp must be before headTimestamp else if (pRtpPacket->header.timestamp >= minimumTimestamp) { retVal = TRUE; } } else { if ((pRtpPacket->header.timestamp < pJitterBuffer->maxLatency && pJitterBuffer->tailTimestamp <= pJitterBuffer->maxLatency) || pRtpPacket->header.timestamp >= pJitterBuffer->tailTimestamp - pJitterBuffer->maxLatency) { retVal = TRUE; } } } return retVal; } ``` #### 整体功能概述 该函数的主要目的是判断传入的 RTP 数据包 `pRtpPacket` 是否在抖动缓冲区 `pJitterBuffer` 的延迟容忍范围内。如果在容忍范围内,函数返回 `TRUE`,否则返回 `FALSE`。 #### 代码逻辑详细解释 1. **初始化变量**: - `retVal`:用于存储最终的返回值,初始化为 `FALSE`。 - `minimumTimestamp`:用于存储最小时间戳,初始化为 0。 2. **简单检查**: - 调用 `tailTimestampCheck` 函数检查数据包的时间戳是否在尾部时间戳之后,或者数据包的时间戳是否等于尾部时间戳。如果满足条件,则将 `retVal` 设置为 `TRUE`,表示数据包在延迟容忍范围内。 3. **处理时间戳溢出情况**: - 如果 `pJitterBuffer->timestampOverFlowState` 为 `TRUE`,表示发生了时间戳溢出。 - 当 `pJitterBuffer->tailTimestamp < pJitterBuffer->maxLatency` 时,计算 `minimumTimestamp`,以确保在溢出边界上计算最大延迟时不会触发下溢。 - 检查数据包的时间戳是否小于尾部时间戳或者大于头部时间戳。如果满足条件,则将 `retVal` 设置为 `TRUE`。 - 如果上述条件不满足,检查数据包的时间戳是否大于等于 `minimumTimestamp`。如果满足条件,则将 `retVal` 设置为 `TRUE`。 4. **处理无时间戳溢出情况**: - 如果 `pJitterBuffer->timestampOverFlowState` 为 `FALSE`,表示没有发生时间戳溢出。 - 检查数据包的时间戳是否小于 `pJitterBuffer->maxLatency` 且尾部时间戳小于等于 `pJitterBuffer->maxLatency`,或者数据包的时间戳是否大于等于尾部时间戳减去最大延迟。如果满足条件,则将 `retVal` 设置为 `TRUE`。 5. **返回结果**: - 最后返回 `retVal`。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值