LaTeX符号大全及使用 (LaTeX symbols and Use)

LaTeX符号大全及使用 (LaTeX symbols and Use)


Preamble

LaTeX 是一种强大的数学排版工具,在 Markdown、Jupyter Notebook、Obsidian、Typora 等支持 LaTeX 的环境中,我们可以使用 LaTeX 语法来编写数学公式。

这份笔记是笔者在学习LaTeX 使用过程中所收集和归纳的常用符号、命令以及排版技巧,囊括内容非常全面,后续也将持续更新。


1 Basci

1.1 Inline & Display Mode

LaTeX 提供了 两种模式 来书写数学公式:

  1. 行内公式(Inline Mode):使用 $...$ 语法
  2. 独立公式(Display Mode):使用 \[...\]$$...$$ 语法
Inline Formula

行内公式用于正文中插入数学表达式,不会单独占据一行。

Example

文本文本...... $ a^2 + b^2 = c^2 $ ......文本文本

Rendered Output: 文本文本… a 2 + b 2 = c 2 a^2 + b^2 = c^2 a2+b2=c2 …文本文本


Display Formula

独立公式会单独占一行,并居中显示。

Example

\[
a^2 + b^2 = c^2
\]

or:

$$
a^2 + b^2 = c^2
$$

Rendered Output

a 2 + b 2 = c 2 a^2 + b^2 = c^2 a2+b2=c2


1.2 Superscript & Subscript

在 LaTeX 公式中,我们使用 ^(上标)_(下标) 来表示 指数、角标等

Superscript

使用 ^ 表示 上标(指数)

$ a^2, x^{10}, e^{x+y} $

Rendered Output a 2 , x 10 , e x + y a^2, x^{10}, e^{x+y} a2,x10,ex+y


Subscript

使用 _ 表示 下标(角标)

$ a_1, x_{i+1}, H_{2}O $

Rendered Output a 1 , x i + 1 , H 2 O a_1, x_{i+1}, H_{2}O a1,xi+1,H2O


–Note–

^_ 仅对其后紧邻的一个字符生效,如果包含多个字符,需 使用大括号 {} 包裹

$ x^10 $ (正确 ✅)
$ x^{10} $(正确 ✅)
$ x^10_2 $ (正确 ✅)
$ x^10_2 + x_3^{n+1} $(正确 ✅)

$ x^10_2n $ (错误 ❌,因为 `_2n` 没有 `{}` 包裹)

Rendered Output x 10 , x 2 10 , x 3 n + 1 x^{10}, x_2^{10}, x_{3}^{n+1} x10,x210,x3n+1


1.3 Equation Environments

在 LaTeX 中,数学公式可以放在不同的 数学环境 里,以获得更好的格式化效果。常见的数学环境包括:equationaligncasesmultlinesplit

EnvironmentDescriptionExample
equation单行公式,自动编号 E = m c 2 \begin{equation} E = mc^2 \end{equation} E=mc2
align多行公式,支持对齐,使用 & 对齐点 E = m c 2 F = m a \begin{align} E &= mc^2 \\ F &= ma \end{align} EF=mc2=ma
cases适用于分段函数的定义 { x 2 , if  x ≥ 0 − x , if  x < 0 \begin{cases} x^2, & \text{if } x \geq 0 \\ -x, & \text{if } x < 0 \end{cases} {x2,x,if x0if x<0
multline多行公式,自动换行,长公式分段显示本环境不支持
splitequation 环境中拆分长公式,适合长公式的排版 x = y + z = w + t \begin{equation} \begin{split} x &= y + z \\ &= w + t \end{split} \end{equation} x=y+z=w+t
1. equation Environment
  • equation 环境会自动为公式编号,适用于 长篇文档
\[
\begin{equation}
E = mc^2
\end{equation}
\]

Rendered Output

E = m c 2 \begin{equation} E = mc^2 \end{equation} E=mc2


2. align Environment
  • align 用于对齐多行公式& 代表对齐点。
\[
\begin{aligned}
x &= y + 2z \\
  &= 3y - 4
\end{aligned}
\]

Rendered Output

x = y + 2 z = 3 y − 4 \begin{aligned} x &= y + 2z \\ &= 3y - 4 \end{aligned} x=y+2z=3y4


3. cases Environment
  • cases 适用于分段定义的数学函数
\[
f(x) =
\begin{cases}
x^2, & \text{if } x \geq 0 \\
-x, & \text{if } x < 0
\end{cases}
\]

Rendered Output

f ( x ) = { x 2 , if  x ≥ 0 − x , if  x < 0 f(x) = \begin{cases} x^2, & \text{if } x \geq 0 \\ -x, & \text{if } x < 0 \end{cases} f(x)={x2,x,if x0if x<0


4. multline Environment
  • multline 用于多行公式,并将公式分行显示,第一个可用位置作为换行点。
\[ 
\begin{multline} 
x = y + z + w + t \\ 
+ a + b + c 
\end{multline} 
\] 

Rendered Output

本环境暂不支持显示


5. split Environment
  • split 用于将公式拆分成多行,并与 equation 环境结合,适用于拆分长公式。
\[
\begin{equation} 
\begin{split} 
x &= y + z \\ &= w + t 
\end{split} 
\end{equation}
\]

Rendered Output

x = y + z = w + t \begin{equation} \begin{split} x &= y + z \\ &= w + t \end{split} \end{equation} x=y+z=w+t


1.4 Spacing in Math Mode

LaTeX 提供了一些空格控制命令,用于调整符号之间的间距。

SymbolCommandSymbolCommandSymbolCommand
a b a \quad b aba \quad b a   b a \, b aba , b a  ⁣ b a \! b aba ! b
x = constant x = \text{constant} x=constantx = \text{constant} a    b a \; b aba ; b a   b a \: b aba : b

Example:

\[
    a \quad b, \quad a \, b, \quad a \! b
\]

Rendered Output:

a b , a   b , a  ⁣ b a \quad b, \quad a \, b, \quad a \! b ab,ab,ab


Inline Text in Math Mode

在数学模式中,使用 \text{} 来插入普通文本,以保持文本格式正确。

Example:

\[
    x = 5, \quad \text{where } x \text{ is the unknown variable.}
\]

Rendered Output:

x = 5 , where  x  is the unknown variable. x = 5, \quad \text{where } x \text{ is the unknown variable.} x=5,where x is the unknown variable.


1.5 Using LaTeX in Markdown

在不同的 Markdown 编辑器中,LaTeX 的支持情况如下:

编辑器支持情况备注
Jupyter Notebook✅ 完全支持需安装 MathJax
Typora✅ 完全支持需开启 Markdown 数学
Obsidian✅ 完全支持内置 MathJax
VS Code + Markdown Preview Enhanced✅ 完全支持需安装插件
GitHub Markdown⚠ 部分支持仅支持 $...$,不支持 \[\]

1.6 Test

可以尝试以下 LaTeX 代码,并查看渲染效果:

1. $\frac{a}{b}$
2. $\sqrt{x^2 + y^2}$
3. $\sum_{i=1}^{n} i^2$
4. $\int_{0}^{\infty} e^{-x}dx$
5. $f(x) = \begin{cases} x^2, & x \geq 0 \\ -x, & x < 0 \end{cases}$

2 Greek Letters.

希腊字母

Lowercase Greek Letters.

SymbolCommandSymbolCommandSymbolCommand
α \alpha α\alpha β \beta β\beta γ \gamma γ\gamma
δ \delta δ\delta ϵ \epsilon ϵ\epsilon ε \varepsilon ε\varepsilon
ζ \zeta ζ\zeta η \eta η\eta θ \theta θ\theta
ϑ \vartheta ϑ\vartheta ι \iota ι\iota κ \kappa κ\kappa
λ \lambda λ\lambda μ \mu μ\mu ν \nu ν\nu
ξ \xi ξ\xi π \pi π\pi ϖ \varpi ϖ\varpi
ρ \rho ρ\rho ϱ \varrho ϱ\varrho σ \sigma σ\sigma
ς \varsigma ς\varsigma τ \tau τ\tau υ \upsilon υ\upsilon
ϕ \phi ϕ\phi φ \varphi φ\varphi χ \chi χ\chi
ψ \psi ψ\psi ω \omega ω\omega

Uppercase Greek Letters.

SymbolCommandSymbolCommandSymbolCommand
Γ \Gamma Γ\Gamma Δ \Delta Δ\Delta Θ \Theta Θ\Theta
Λ \Lambda Λ\Lambda Ξ \Xi Ξ\Xi Π \Pi Π\Pi
Σ \Sigma Σ\Sigma Υ \Upsilon Υ\Upsilon Φ \Phi Φ\Phi
Ψ \Psi Ψ\Psi Ω \Omega Ω\Omega ℵ \aleph \aleph
ℶ \beth \beth ℸ \daleth \daleth ℷ \gimel \gimel

有代码的大写希腊字母,直接敲获得正体,使用\var前缀转化为斜体

如:\Gamma Γ \Gamma Γ(正) \varGamma Γ \varGamma Γ(斜)

没有代码的大写希腊字母,直接敲得斜体,使用\text 命令转化为正体

如:T T T T直接敲(斜) \text T T \text T T(正)

(也可以使用\rm将下一个单词变正,\text T的作用范围只是下一个字母;可以尝试加{}


3 Math Mode Accents

在 LaTeX 数学模式中,我们可以使用 重音符号 来表示:

  • 导数(Newton 记号)
  • 单位向量
  • 逼近(傅里叶变换)
  • 复数共轭
  • 上下划线用于变量强调

Summary Table

SymbolCommandSymbolCommandSymbolCommand
a ^ \hat{a} a^\hat{a} a ˇ \check{a} aˇ\check{a} a ˙ \dot{a} a˙\dot{a}
a ˘ \breve{a} a˘\breve{a} a ˊ \acute{a} aˊ\acute{a} a ¨ \ddot{a} a¨\ddot{a}
a ˋ \grave{a} aˋ\grave{a} a ~ \tilde{a} a~\tilde{a} a ˚ \mathring{a} a˚\mathring{a}
a ˉ \bar{a} aˉ\bar{a} a ⃗ \vec{a} a \vec{a} A B → \overrightarrow{AB} AB \overrightarrow{AB}
C D ← \overleftarrow{CD} CD \overleftarrow{CD} x y z ‾ \overline{xyz} xyz\overline{xyz} a b c ‾ \underline{abc} abc\underline{abc}
A ^ \widehat{A} A \widehat{A} A ~ \widetilde{A} A \widetilde{A} a + b + c ⏞ \overbrace{a + b + c} a+b+c \overbrace{a + b + c}
1 + 2 + ⋯ + n ⏟ \underbrace{1 + 2 + \dots + n} 1+2++n\underbrace{1 + 2 + \dots + n}

3.1 Superscripts

用于:

  • 单位向量 x ^ \hat{x} x^
  • 近似表示 x ~ \tilde{x} x~
  • 一阶/二阶导数 x ˙ \dot{x} x˙, x ¨ \ddot{x} x¨
SymbolCommandDescription
x ^ \hat{x} x^\hat{x}单位向量
x y ^ \widehat{xy} xy \widehat{xy}大范围的帽子符号
x ~ \tilde{x} x~\tilde{x}近似表示(如傅里叶变换)
a b c ~ \widetilde{abc} abc \widetilde{abc}大范围的波浪符号
x ˙ \dot{x} x˙\dot{x}一阶导数(微分)
x ¨ \ddot{x} x¨\ddot{x}二阶导数(加速度)

Example

$\hat{x}, \widehat{xy}, \tilde{x}, \widetilde{abc}, \dot{x}, \ddot{x}$

Rendered Output

x ^ , x y ^ , x ~ , a b c ~ , x ˙ , x ¨ \hat{x}, \widehat{xy}, \tilde{x}, \widetilde{abc}, \dot{x}, \ddot{x} x^,xy ,x~,abc ,x˙,x¨


3.2 Vector Symbols

用于:

  • 物理和工程中的向量 v ⃗ \vec{v} v
  • 几何中的方向向量 A B → \overrightarrow{AB} AB
SymbolCommandDescription
v ⃗ \vec{v} v \vec{v}标准向量符号
A B → \overrightarrow{AB} AB \overrightarrow{AB}带方向的向量
C D ← \overleftarrow{CD} CD \overleftarrow{CD}反向向量

Example

$\vec{v}, \overrightarrow{AB}, \overleftarrow{CD}$

Rendered Output

v ⃗ , A B → , C D ← \vec{v}, \overrightarrow{AB}, \overleftarrow{CD} v ,AB ,CD


3.3 Overline & Underline

用于:

  • 复共轭 z ‾ \overline{z} z
  • 变量强调 x ‾ \underline{x} x
SymbolCommandDescription
x + y ‾ \overline{x+y} x+y\overline{x+y}复共轭,均值等
a b c ‾ \underline{abc} abc\underline{abc}变量下划线
a + b + c ⏞ Sum \overbrace{a + b + c}^{\text{Sum}} a+b+c Sum\overbrace{a + b + c}^{\text{Sum}}括号上标注
1 + 2 + ⋯ + n ⏟ n-term sum \underbrace{1 + 2 + \dots + n}_{\text{n-term sum}} n-term sum 1+2++n\underbrace{1 + 2 + \dots + n}_{\text{n-term sum}}括号下标注

Example

$\overline{x+y}, \underline{abc}, \overbrace{a + b + c}^{\text{Sum}}, \underbrace{1 + 2 + \dots + n}_{\text{n-term sum}}$

Rendered Output

x + y ‾ , a b c ‾ , a + b + c ⏞ Sum , 1 + 2 + ⋯ + n ⏟ n-term sum \overline{x+y}, \underline{abc}, \overbrace{a + b + c}^{\text{Sum}}, \underbrace{1 + 2 + \dots + n}_{\text{n-term sum}} x+y,abc,a+b+c Sum,n-term sum 1+2++n


4 Math Constructs

在 LaTeX 数学模式中,可以使用各种数学结构来表示 指数、下标、分数、根号、求和、积分、极限、对数、三角函数 等。


4.1 Exponents and Subscripts

SymbolCommandDescription
a 2 a^2 a2a^2上标符号,表示指数运算。
x i x_i xix_i下标符号,常用于表示索引或元素的位置。
y m + n y^{m+n} ym+ny^{m+n}上标符号,可以表示多项式中的指数。
z i , j z_{i,j} zi,jz_{i,j}下标符号,常用于表示矩阵或多维数组中的元素。

Example

$a^2, x_i, y^{m+n}, z_{i,j}$

Rendered Output

a 2 , x i , y m + n , z i , j a^2, x_i, y^{m+n}, z_{i,j} a2,xi,ym+n,zi,j


4.2 Fractions

SymbolCommandDescription
a b \frac{a}{b} ba\frac{a}{b}普通分数格式,适用于行内公式。
a b \dfrac{a}{b} ba\dfrac{a}{b}显示模式下的分数,显示更大,适合单独一行的公式。
a b \tfrac{a}{b} ba\tfrac{a}{b}小尺寸的分数,适用于行内公式。

Example

$\frac{a}{b}, \dfrac{a}{b}, \tfrac{a}{b}$

Rendered Output

a b , a b , a b \frac{a}{b}, \dfrac{a}{b}, \tfrac{a}{b} ba,ba,ba


4.3 Radicals

SymbolCommandDescription
2 \sqrt{2} 2 \sqrt{2}平方根,表示 2 2 2 的平方根。
x 3 \sqrt[3]{x} 3x \sqrt[3]{x}立方根,表示 x x x 的三次根。

Example

$\sqrt{2}, \sqrt[3]{x}$

Rendered Output

2 , x 3 \sqrt{2}, \sqrt[3]{x} 2 ,3x


4.4 Summation and Integration

SymbolCommandDescription
∑ i = 1 n i 2 \sum_{i=1}^{n} i^2 i=1ni2\sum_{i=1}^{n} i^2求和符号,表示累加运算。
∏ i = 1 n i \prod_{i=1}^{n} i i=1ni\prod_{i=1}^{n} i积符号,表示累乘运算。
∫ 0 ∞ e − x d x \int_{0}^{\infty} e^{-x}dx 0exdx\int_{0}^{\infty} e^{-x}dx积分符号,表示对函数的积分,通常用于计算连续量。
∬ D f ( x , y ) d x d y \iint_D f(x,y)dxdy Df(x,y)dxdy\iint_D f(x,y)dxdy双重积分,用于二维空间的积分。
∭ V f ( x , y , z ) d x d y d z \iiint_V f(x,y,z)dxdydz Vf(x,y,z)dxdydz\iiint_V f(x,y,z)dxdydz三重积分,用于三维空间的积分。

Example

$\sum_{i=1}^{n} i^2, \prod_{i=1}^{n} i, \int_{0}^{\infty} e^{-x}dx$

Rendered Output

∑ i = 1 n i 2 , ∏ i = 1 n i , ∫ 0 ∞ e − x d x \sum_{i=1}^{n} i^2, \prod_{i=1}^{n} i, \int_{0}^{\infty} e^{-x}dx i=1ni2,i=1ni,0exdx


4.5 Limits, Logarithms, and Trigonometric Functions

SymbolCommandDescription
arccos ⁡ \arccos arccos\arccos反余弦函数,表示角度的反函数。
arcsin ⁡ \arcsin arcsin\arcsin反正弦函数,表示角度的反函数。
arctan ⁡ \arctan arctan\arctan反正切函数,表示角度的反函数。
cos ⁡ \cos cos\cos余弦函数,常用于三角形计算和周期性现象。
cosh ⁡ \cosh cosh\cosh双曲余弦函数,常用于描述双曲线的性质。
cot ⁡ \cot cot\cot余切函数,是正切函数的倒数。
csc ⁡ \csc csc\csc余割函数,是正弦函数的倒数。
deg ⁡ \deg deg\deg度数符号,表示角度单位。
det ⁡ \det det\det行列式,表示矩阵的行列式值。
exp ⁡ \exp exp\exp指数函数,表示以自然常数 e e e 为底的指数函数。
gcd ⁡ \gcd gcd\gcd最大公约数,用于表示两个数的最大公约数。
hom ⁡ \hom hom\hom同态,用于代数结构中的映射。
ker ⁡ \ker ker\ker,表示线性变换的核空间。
lim ⁡ \lim lim\lim极限符号,表示一个函数在某点的极限值。
lg ⁡ \lg lg\lg常用对数,以 10 10 10 为底的对数。
lim sup ⁡ \limsup limsup\limsup上极限,表示一列数的上极限。
ln ⁡ \ln ln\ln自然对数,以 e e e 为底的对数。
log ⁡ \log log\log对数,一般情况下指任意底数的对数。
min ⁡ \min min\min最小值,表示函数的最小值。
Pr ⁡ \Pr Pr\Pr概率,表示事件发生的概率。
sup ⁡ \sup sup\sup上确界,表示函数的上界。
sinh ⁡ \sinh sinh\sinh双曲正弦函数,常用于描述双曲线的性质。
sin ⁡ \sin sin\sin正弦函数,常用于三角形计算和周期性现象。
tan ⁡ \tan tan\tan正切函数,常用于角度计算。
sec ⁡ \sec sec\sec正割函数,是余弦函数的倒数。
tanh ⁡ \tanh tanh\tanh双曲正切函数,常用于描述双曲线的性质。
inf ⁡ \inf inf\inf下确界,表示函数的下界。
max ⁡ \max max\max最大值,表示函数的最大值。
arg ⁡ \arg arg\arg辐角,表示复数的相位角。
lim inf ⁡ \liminf liminf\liminf下极限,表示一列数的下极限。

Example

$\lim_{x \to \infty} f(x), \log x, \ln x, \sin x, \cos x, \tan x$

Rendered Output

lim ⁡ x → ∞ f ( x ) , log ⁡ x , ln ⁡ x , sin ⁡ x , cos ⁡ x , tan ⁡ x \lim_{x \to \infty} f(x), \log x, \ln x, \sin x, \cos x, \tan x xlimf(x),logx,lnx,sinx,cosx,tanx


5 Delimiters

在 LaTeX 数学模式中,分隔符用于 包围数学表达式,例如 括号、绝对值、范数 等。使用 \left\right 使括号大小自适应内容。


5.1 Standard Delimiters

SymbolCommandDescription
( a + b ) (a+b) (a+b)(a+b)普通小括号
[ a + b ] [a+b] [a+b][a+b]普通方括号
a + b {a+b} a+b{a+b}花括号,用于集合表示等
⟨ a , b ⟩ \langle a, b \rangle a,b\langle a, b \rangle尖括号,常用于内积或向量表示

Example

$(a+b), [a+b], \{a+b\}, \langle a, b \rangle$

Rendered Output

( a + b ) , [ a + b ] , { a + b } , ⟨ a , b ⟩ (a+b), [a+b], \{a+b\}, \langle a, b \rangle (a+b),[a+b],{a+b},a,b


5.2 Resizable Delimiters

SymbolCommandDescription
( x + y ) \left( x+y \right) (x+y)\left( x+y \right)自动调节大小的小括号
[ x + y ] \left[ x+y \right] [x+y]\left[ x+y \right]自动调节大小的方括号
{ x + y } \{ x+y \} {x+y}\left{ x+y \right}自动调节大小的花括号
⟨ x + y ⟩ \left\langle x+y \right\rangle x+y\left\langle x+y \right\rangle自动调节大小的尖括号

Example

\left( x+y \right), \left[ x+y \right], \left\{ x+y \right\}, \left\langle x+y \right\rangle

Rendered Output

( x + y ) , [ x + y ] , { x + y } , ⟨ x + y ⟩ \left( x+y \right), \left[ x+y \right], \left\{ x+y \right\}, \left\langle x+y \right\rangle (x+y),[x+y],{x+y},x+y


5.3 Absolute Value and Norm

Example

|x|, \left| x+y \right|, \|x\|, \left\| x+y \right\|

Rendered Output

∣ x ∣ , ∣ x + y ∣ , ∥ x ∥ , ∥ x + y ∥ |x|, \left| x+y \right|, \|x\|, \left\| x+y \right\| x,x+y,x,x+y


5.4 Floor and Ceiling Functions

SymbolCommandDescription
⌊ x ⌋ \lfloor x \rfloor x\lfloor x \rfloor向下取整符号
⌊ x ⌋ \left\lfloor x \right\rfloor x\left\lfloor x \right\rfloor自适应大小的向下取整
⌈ x ⌉ \lceil x \rceil x\lceil x \rceil向上取整符号
⌈ x ⌉ \left\lceil x \right\rceil x\left\lceil x \right\rceil自适应大小的向上取整

Example

\lfloor x \rfloor, \left\lfloor x \right\rfloor, \lceil x \rceil, \left\lceil x \right\rceil

Rendered Output

⌊ x ⌋ , ⌊ x ⌋ , ⌈ x ⌉ , ⌈ x ⌉ \lfloor x \rfloor, \left\lfloor x \right\rfloor, \lceil x \rceil, \left\lceil x \right\rceil x,x,x,x


5.5 Additional Delimiters

SymbolCommandSymbolCommandSymbolCommand
⟮ \lgroup \lgroup ⟯ \rgroup \rgroupno support\arrowvert
no support\Arrowvert { \lbrace {\lbrace } \rbrace }\rbrace
⎰ \lmoustache \lmoustache ⎱ \rmoustache \rmoustacheno support\bracevert

6 Variable-sized Symbols

在 LaTeX 中,某些数学符号会根据公式模式的不同自动调整大小。特别是在独立公式模式下,这些符号通常会变大,以增强可读性和表现力。

SymbolCommandDescription
∑ \sum \sum求和符号
∏ \prod \prod积符号
∐ \coprod \coprod共积符号
∫ \int \int积分符号
∮ \oint \oint曲线积分符号
⨄ \biguplus \biguplus并积符号
⋂ \bigcap \bigcap交集符号
⋃ \bigcup \bigcup并集符号
⨂ \bigotimes \bigotimes张量积符号
⋁ \bigvee \bigvee并(大写)符号
⋀ \bigwedge \bigwedge交(大写)符号
⨀ \bigodot \bigodot点积符号
⨆ \bigsqcup \bigsqcup并集(带上标)

\sum, \prod, \coprod, \int, \oint, \biguplus, \bigcap, \bigcup, \bigotimes, \bigvee, \bigwedge, \bigodot, \bigsqcup

渲染后的效果:

∑ , ∏ , ∐ , ∫ , ∮ , ⨄ , ⋂ , ⋃ , ⨂ , ⋁ , ⋀ , ⨀ , ⨆ \sum, \prod, \coprod, \int, \oint, \biguplus, \bigcap, \bigcup, \bigotimes, \bigvee, \bigwedge, \bigodot, \bigsqcup ,,,,,,,,,,,,



7 Binary Operation/Relation Symbols

Operators Symbols

SymbolCommandSymbolCommandSymbolCommand
± \pm ±\pm ∓ \mp \mp × \times ×\times
÷ \div ÷\div ⋅ \cdot \cdot ∗ \ast \ast
⋆ \star \star † \dagger \dagger ‡ \ddagger \ddagger
⨿ \amalg ⨿\amalg ∩ \cap \cap ∪ \cup \cup
⊎ \uplus \uplus ⊓ \sqcap \sqcap ⊔ \sqcup \sqcup
∨ \vee \vee ∧ \wedge \wedge ⊕ \oplus \oplus
⊖ \ominus \ominus ⊗ \otimes \otimes ∘ \circ \circ
∙ \bullet \bullet ⋄ \diamond \diamond ⊲ \lhd \lhd
⊳ \rhd \rhd ⊴ \unlhd \unlhd ⊵ \unrhd \unrhd
⊘ \oslash \oslash ⊙ \odot \odot ◯ \bigcirc \bigcirc
◃ \triangleleft \triangleleft ◊ \Diamond \Diamond △ \bigtriangleup \bigtriangleup
▽ \bigtriangledown \bigtriangledown □ \Box \Box ▹ \triangleright \triangleright
∖ \setminus \setminus ≀ \wr \wr x \sqrt{x} x \sqrt{x}
x ∘ x^{\circ} xx^{\circ} ▽ \triangledown \triangledown x n \sqrt[n]{x} nx \sqrt[n]{x}
a x a^x axa^x a x y z a^{xyz} axyza^{xyz} a x a_x axa_x

Relations Symbols

SymbolCommandSymbolCommandSymbolCommand
≤ \le \le ≥ \ge \ge ≠ \neq =\neq
∼ \sim \sim ≪ \ll \ll ≫ \gg \gg
≐ \doteq \doteq ≃ \simeq \simeq ⊂ \subset \subset
⊃ \supset \supset ≈ \approx \approx ≍ \asymp \asymp
⊆ \subseteq \subseteq ⊇ \supseteq \supseteq ≅ \cong \cong
⌣ \smile \smile ⊏ \sqsubset \sqsubset ⊐ \sqsupset \sqsupset
≡ \equiv \equiv ⌢ \frown \frown ⊑ \sqsubseteq \sqsubseteq
⊒ \sqsupseteq \sqsupseteq ∝ \propto \propto ⋈ \bowtie \bowtie
∈ \in \in ∋ \ni \ni ≺ \prec \prec
≻ \succ \succ ⊢ \vdash \vdash ⊣ \dashv \dashv
⪯ \preceq \preceq ⪰ \succeq \succeq ⊨ \models \models
⊥ \perp \perp ∥ \parallel \parallel ∣ \mid \mid
≏ \bumpeq \bumpeq

Negated Relations Symbols

SymbolCommandSymbolCommandSymbolCommand
∤ \nmid \nmid ≰ \nleq \nleq ≱ \ngeq \ngeq
≁ \nsim \nsim ≆ \ncong \ncong ∦ \nparallel \nparallel
≮ \not< <\not< ≯ \not> >\not> ≠ \not= =\not=, \neq, \ne
≰ \not\le \not\le ≱ \not\ge \not\ge ≁ \not\sim \not\sim
≉ \not\approx \not\approx ≇ \not\cong \not\cong ≢ \not\equiv \not\equiv
∦ \not\parallel \not\parallel ≮ \nless \nless ≯ \ngtr \ngtr
⪇ \lneq \lneq ⪈ \gneq \gneq ⋦ \lnsim \lnsim
≨ \lneqq \lneqq ≩ \gneqq \gneqq

8 Arrow symbols

Standard Arrows

SymbolCommandSymbolCommandSymbolCommand
← \leftarrow \leftarrow ⟵ \longleftarrow \longleftarrow ↑ \uparrow \uparrow
⇐ \Leftarrow \Leftarrow ⟸ \Longleftarrow \Longleftarrow ⇑ \Uparrow \Uparrow
→ \rightarrow \rightarrow ⟶ \longrightarrow \longrightarrow ↓ \downarrow \downarrow
⇒ \Rightarrow \Rightarrow ⟹ \Longrightarrow \Longrightarrow ⇓ \Downarrow \Downarrow
↔ \leftrightarrow \leftrightarrow ⟷ \longleftrightarrow \longleftrightarrow ↕ \updownarrow \updownarrow
⇔ \Leftrightarrow \Leftrightarrow ⟺ \Longleftrightarrow \Longleftrightarrow ⇕ \Updownarrow \Updownarrow
A B → \overrightarrow{AB} AB \overrightarrow{AB} A B ← \overleftarrow{AB} AB \overleftarrow{AB} A B ↔ \overleftrightarrow{AB} AB \overleftrightarrow{AB}

Mapping and Hook Arrows

SymbolCommandSymbolCommandSymbolCommand
↦ \mapsto \mapsto ⟼ \longmapsto \longmapsto ↗ \nearrow \nearrow
↩ \hookleftarrow \hookleftarrow ↪ \hookrightarrow \hookrightarrow ↘ \searrow \searrow
↼ \leftharpoonup \leftharpoonup ⇀ \rightharpoonup \rightharpoonup ↙ \swarrow \swarrow
↽ \leftharpoondown \leftharpoondown ⇁ \rightharpoondown \rightharpoondown ↖ \nwarrow \nwarrow
⇌ \rightleftharpoons \rightleftharpoons ⇝ \leadsto \leadsto

Extended Arrows

SymbolCommandSymbolCommandSymbolCommand
⇢ \dashrightarrow \dashrightarrow ⇠ \dashleftarrow \dashleftarrow ⇇ \leftleftarrows \leftleftarrows
⇆ \leftrightarrows \leftrightarrows ⇐ \Leftarrow \Leftarrow ↞ \twoheadleftarrow \twoheadleftarrow
↢ \leftarrowtail \leftarrowtail ↫ \looparrowleft \looparrowleft ⇋ \leftrightharpoons \leftrightharpoons
↶ \curvearrowleft \curvearrowleft ↺ \circlearrowleft \circlearrowleft ↰ \Lsh \Lsh
⇈ \upuparrows \upuparrows ↿ \upharpoonleft \upharpoonleft ⇃ \downharpoonleft \downharpoonleft
⊸ \multimap \multimap ↭ \leftrightsquigarrow \leftrightsquigarrow ⇉ \rightrightarrows \rightrightarrows
⇄ \rightleftarrows \rightleftarrows ⇉ \rightrightarrows \rightrightarrows ⇆ \leftrightarrows \leftrightarrows
↠ \twoheadrightarrow \twoheadrightarrow ↣ \rightarrowtail \rightarrowtail ↬ \looparrowright \looparrowright
⇌ \rightleftharpoons \rightleftharpoons ↷ \curvearrowright \curvearrowright ↻ \circlearrowright \circlearrowright
↱ \Rsh \Rsh ⇊ \downdownarrows \downdownarrows ↾ \upharpoonright \upharpoonright
⇂ \downharpoonright \downharpoonright ⇝ \rightsquigarrow \rightsquigarrow

Negated Arrows

SymbolCommandSymbolCommandSymbolCommand
↚ \nleftarrow \nleftarrow ↛ \nrightarrow \nrightarrow ↮ \nleftrightarrow \nleftrightarrow
⇏ \nRightarrow \nRightarrow ⇍ \nLeftarrow \nLeftarrow ⇎ \nLeftrightarrow \nLeftrightarrow

9 Miscellaneous symbols

SymbolCommandSymbolCommandSymbolCommand
∞ \infty \infty ∇ \nabla \nabla ∂ \partial \partial
ð \eth ð\eth ♣ \clubsuit \clubsuit ♢ \diamondsuit \diamondsuit
♡ \heartsuit \heartsuit ♠ \spadesuit \spadesuit ⋯ \cdots \cdots
⋮ \vdots \vdots … \ldots \ldots ⋱ \ddots \ddots
ℑ \Im \Im ℜ \Re \Re ∀ \forall \forall
∃ \exists \exists ∄ \nexists \nexists ∅ \emptyset \emptyset
∅ \varnothing \varnothing ı \imath \imath ȷ \jmath \jmath
ℓ \ell \ell ∭ \iiint \iiint ∬ \iint \iint
♯ \sharp \sharp ♭ \flat \flat ♮ \natural \natural
k \Bbbk k\Bbbk ★ \bigstar \bigstar ╲ \diagdown \diagdown
╱ \diagup \diagup ◊ \Diamond \Diamond Ⅎ \Finv \Finv
⅁ \Game \Game ℏ \hbar \hbar ℏ \hslash \hslash
◊ \lozenge \lozenge ℧ \mho \mho ′ \prime \prime
□ \square \square √ \surd \surd ℘ \wp \wp
∠ \angle \angle ∡ \measuredangle \measuredangle ∢ \sphericalangle \sphericalangle
∁ \complement \complement ▽ \triangledown \triangledown △ \triangle \triangle
△ \vartriangle \vartriangle ⧫ \blacklozenge \blacklozenge ■ \blacksquare \blacksquare
▲ \blacktriangle \blacktriangle ▼ \blacktriangledown \blacktriangledown ‵ \backprime \backprime
Ⓢ \circledS \circledS § \S §\S LaTeX \LaTeX LATEX\LaTeX

10 Other Styles (math mode only)

StyleSymbolCommand
Caligraphic letters A , B , C , D \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} A,B,C,D etc.\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} etc.
Mathbb letters A , B , C , D \mathbb{A}, \mathbb{B}, \mathbb{C}, \mathbb{D} A,B,C,D etc.\mathbb{A}, \mathbb{B}, \mathbb{C}, \mathbb{D} etc.
Mathfrak letters A , B , C , D \mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D} A,B,C,D etc.\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D} etc.
Math Sans serif letters A , B , C , D \mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{D} A,B,C,D etc.\mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{D} etc.
Math bold letters A , B , C , D \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} A,B,C,D etc.\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} etc.
Math roman letters A , B , C , D \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} A,B,C,D etc.\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} etc.
Math italic letters A , B , C , D \mathit{A}, \mathit{B}, \mathit{C}, \mathit{D} A,B,C,D etc.\mathit{A}, \mathit{B}, \mathit{C}, \mathit{D} etc.
Math scr letters A , B , C , D \mathscr{A}, \mathscr{B}, \mathscr{C}, \mathscr{D} A,B,C,D etc.\mathscr{A}, \mathscr{B}, \mathscr{C}, \mathscr{D} etc.

11 Font sizes

Math Mode

SymbolCommand
∫ f − 1 ( x − x a ) , d x \int f^{-1}(x - x_a) , dx f1(xxa),dx\int f^{-1}(x - x_a) , dx
∫ f − 1 ( x − x a ) , d x \displaystyle \int f^{-1}(x - x_a) , dx f1(xxa),dx\displaystyle \int f^{-1}(x - x_a) , dx
∫ f − 1 ( x − x a ) , d x \textstyle \int f^{-1}(x - x_a) , dx f1(xxa),dx\textstyle \int f^{-1}(x - x_a) , dx
∫ f − 1 ( x − x a ) , d x \scriptstyle \int f^{-1}(x - x_a) , dx f1(xxa),dx\scriptstyle \int f^{-1}(x - x_a) , dx
∫ f − 1 ( x − x a ) , d x \scriptscriptstyle \int f^{-1}(x - x_a) , dx f1(xxa),dx\scriptscriptstyle \int f^{-1}(x - x_a) , dx

Text Mode

SymbolCommand
h m c \tiny{hmc} hmc\tiny{hmc}
h m c \scriptsize{hmc} hmc\scriptsize{hmc}
h m c \small{hmc} hmc\small{hmc}
h m c \normalsize{hmc} hmc\normalsize{hmc}
h m c \large{hmc} hmc\large{hmc}
h m c \Large{hmc} hmc\Large{hmc}
h m c \LARGE{hmc} hmc\LARGE{hmc}
h m c \huge{hmc} hmc\huge{hmc}
h m c \Huge{hmc} hmc\Huge{hmc}

12 Math Commands

Subscripts and Superscripts

SymbolCommandSymbolCommand
3 2 3^2 323^2 b i b_i bib_i
3 23 3^{23} 3233^{23} m i − 1 m_{i-1} mi1m_{i-1}
d 3 i + 1 d^{i+1}_3 d3i+1d^{i+1}_3 y 3 2 y^2_3 y32y^{2}_3
2 a i 2^{ai} 2ai2^{ai} 2 ( a i ) 2^{(a_i)} 2(ai)2^{(a_i)}

Fractions

SymbolCommand
1 2 \frac{1}{2} 21\frac{1}{2}
2 x + 2 \frac{2}{x+2} x+22\frac{2}{x+2}
1 + 1 x 3 x + 2 \frac{1 + \frac{1}{x}}{3x + 2} 3x+21+x1\frac{1 + \frac{1}{x}}{3x + 2}
2 1 + 2 1 + 2 1 + 2 1 \cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1}}}} 1+1+1+12222\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1}}}}
SymbolCommand
( a x ) 2 (\frac{a}{x} )^2 (xa)2(\frac{a}{x} )^2
( a x ) 2 \left(\frac{a}{x} \right)^2 (xa)2\left(\frac{a}{x} \right)^2
⌈ x y ⌉ \left\lceil \frac{x}{y} \right\rceil yx\left\lceil \frac{x}{y} \right\rceil
⌊ x y ⌋ \left\lfloor \frac{x}{y} \right\rfloor yx\left\lfloor \frac{x}{y} \right\rfloor
a 0 + a 1 + a 2 + ⋯ + a n ⏟ x \underbrace{a_0 + a_1 + a_2 + \cdots + a_n}_x x a0+a1+a2++an\underbrace{a_0 + a_1 + a_2 + \cdots + a_n}_x
a 0 + a 1 + a 2 + ⋯ + a n ⏞ x \overbrace{a_0 + a_1 + a_2 + \cdots + a_n}^x a0+a1+a2++an x\overbrace{a_0 + a_1 + a_2 + \cdots + a_n}^x
arg ⁡ m a x 1 ≤ k ≤ n λ k λ k + 1 \arg \underset{1\leq k \leq n} {max} \frac{\lambda_k}{\lambda_{k+1}} arg1knmaxλk+1λk\arg \underset{1\leq k \leq n} {max} \frac{\lambda_k}{\lambda_{k+1}}

Radicals

SymbolCommand
3 \sqrt{3} 3 \sqrt{3}
x + y \sqrt{x + y} x+y \sqrt{x + y}
x + 1 2 \sqrt{x + \frac{1}{2}} x+21 \sqrt{x + \frac{1}{2}}
3 3 \sqrt[3]{3} 33 \sqrt[3]{3}
x n \sqrt[n]{x} nx \sqrt[n]{x}

Sums, Products, Limits and Logarithms

SymbolCommand
∑ i = 1 ∞ 1 i \sum_{i=1}^{\infty} \frac{1}{i} i=1i1\sum_{i=1}^{\infty} \frac{1}{i}
∏ n = 1 5 n n − 1 \prod_{n=1}^5 \frac{n}{n-1} n=15n1n\prod_{n=1}^5 \frac{n}{n-1}
lim ⁡ x → ∞ 1 x \lim_{x \to \infty} \frac{1}{x} limxx1\lim_{x \to \infty} \frac{1}{x}
lim ⁡ x → ∞ 1 x \lim_{x \to \infty} \frac{1}{x} limxx1\lim_{x \to \infty} \frac{1}{x}
log ⁡ n n 2 \log_n n^2 lognn2\log_n n^2

Some of these are prettier in display mode:

SymbolCommand
∑ i = 1 ∞ 1 i \displaystyle\sum_{i=1}^{\infty} \frac{1}{i} i=1i1\displaystyle\sum_{i=1}^{\infty} \frac{1}{i}
∏ n = 1 5 n n − 1 \displaystyle\prod_{n=1}^5 \frac{n}{n-1} n=15n1n\displaystyle\prod_{n=1}^5 \frac{n}{n-1}
lim ⁡ x → ∞ 1 x \displaystyle\lim_{x \to \infty} \frac{1}{x} xlimx1\displaystyle\lim_{x \to \infty} \frac{1}{x}

Mods

SymbolCommand
∑ 1 i \sum \frac{1}{i} i1\sum \frac{1}{i}
∏ n n − 1 \prod \frac{n}{n-1} n1n\prod \frac{n}{n-1}
log ⁡ n 2 \log n^2 logn2\log n^2
ln ⁡ e \ln e lne\ln e

Trigonometric Functions

SymbolCommand
cos ⁡ 2 x + sin ⁡ 2 x = 1 \cos^2 x +\sin^2 x = 1 cos2x+sin2x=1\cos^2 x +\sin^2 x = 1
c o s 9 0 ∘ = 0 \\cos 90^\circ = 0 cos90=0\cos 90^\circ = 0

Calculus

SymbolCommand
d d x ( x 2 ) = 2 x \frac{d}{dx} \left( x^2 \right) = 2x dxd(x2)=2x\frac{d}{dx} \left( x^2 \right) = 2x
∫ 2 x   d x = x 2 + C \int 2x \, dx = x^2 + C 2xdx=x2+C\int 2x , dx = x^2 + C
∫ 1 5 2 x   d x = 24 \int_1^5 2x \, dx = 24 152xdx=24\int_1^5 2x , dx = 24
∂ 2 U ∂ x 2 + ∂ 2 U ∂ y 2 \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} x22U+y22U\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2}
1 4 π ∮ Σ 1 r ∂ U ∂ n d s \frac{1}{4\pi}\oint_\Sigma\frac{1}{r}\frac{\partial U}{\partial n} ds 4π1Σr1nUds\frac{1}{4\pi}\oint_\Sigma\frac{1}{r}\frac{\partial U}{\partial n} ds

Array environment,examples

SymbolCommand
( 2 τ 7 ϕ − 5 12 3 ψ π 8 ) \begin{pmatrix} 2\tau & 7\phi-\frac{5}{12} \\ 3\psi & \frac{\pi}{8} \end{pmatrix} (2τ3ψ7ϕ1258π)\begin{pmatrix} 2\tau & 7\phi-\frac{5}{12} \ 3\psi & \frac{\pi}{8} \end{pmatrix}
( x y ) \begin{pmatrix} x \\ y \end{pmatrix} (xy)\begin{pmatrix} x \ y \end{pmatrix}
[ 3 4 5 1 3 729 ] \begin{bmatrix} 3 & 4 & 5 \\ 1 & 3 & 729 \end{bmatrix} [31435729]\begin{bmatrix} 3 & 4 & 5 \ 1 & 3 & 729 \end{bmatrix}
( 2 τ 7 ϕ − 5 12 3 ψ π 8 ) ( x y ) a n d [ 3 4 5 1 3 729 ] \begin{pmatrix}2\tau & 7\phi-\frac{5}{12} \\3\psi & \frac{\pi}{8}\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\mathrm{and}\begin{bmatrix}3 & 4 & 5 \\1 & 3 & 729\end{bmatrix} (2τ3ψ7ϕ1258π)(xy)and[31435729]\begin{pmatrix}2\tau & 7\phi-\frac{5}{12} \3\psi & \frac{\pi}{8}\end{pmatrix}\begin{pmatrix}x \y\end{pmatrix}\mathrm{and}\begin{bmatrix}3 & 4 & 5 \1 & 3 & 729\end{bmatrix}

Matrices and Arrays

   A= 
   \begin{pmatrix} 
       a_{11} & a_{12} \\ 
       a_{21} & a_{22} 
   \end{pmatrix}

A = ( a 11 a 12 a 21 a 22 ) A= \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} A=(a11a21a12a22)

   A=
   \begin{bmatrix}
       a_{11} & a_{12} \\
       a_{21} & a_{22}
   \end{bmatrix}

A = [ a 11 a 12 a 21 a 22 ] A= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} A=[a11a21a12a22]

   \begin{bmatrix}
       1 & 2 & 3 \\
       4 & 5 & 6 \\
   \end{bmatrix}

[ 1 2 3 4 5 6 ] \begin{bmatrix}1 & 2 & 3 \\4 & 5 & 6 \\\end{bmatrix} [142536]

   A=
   \begin{Bmatrix}
       a_{11} & a_{12} \\
       a_{21} & a_{22}
   \end{Bmatrix}

A = { a 11 a 12 a 21 a 22 } A= \begin{Bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{Bmatrix} A={a11a21a12a22}

   A=
   \begin{vmatrix}
       a_{11} & a_{12} \\
       a_{21} & a_{22}
   \end{vmatrix}

A = ∣ a 11 a 12 a 21 a 22 ∣ A= \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} A= a11a21a12a22

   A=
   \begin{Vmatrix}
       a_{11} & a_{12} \\
       a_{21} & a_{22}
   \end{Vmatrix}

A = ∥ a 11 a 12 a 21 a 22 ∥ A= \begin{Vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{Vmatrix} A= a11a21a12a22

   A=
   \begin{matrix}
       a_{11} & a_{12} \\
       a_{21} & a_{22}
   \end{matrix}

A = a 11 a 12 a 21 a 22 A= \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix} A=a11a21a12a22

   \begin{array}{ccc} 
       a & b & c \\ 
       d & e & f \\ 
       g & h & i  
   \end{array}

a b c d e f g h i \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} adgbehcfi

    \mathbf{X} = 
        \left(
            \begin{array}{cccc}
                x_{11} & x_{12} & \ldots & x_{1n}\\
                x_{21} & x_{22} & \ldots & x_{2n}\\
                \vdots & \vdots & \ddots & \vdots\\
                x_{n1} & x_{n2} & \ldots & x_{nn}\\
            \end{array}
        \right) 

X = ( x 11 x 12 … x 1 n x 21 x 22 … x 2 n ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 … x n n ) \mathbf{X} = \left( \begin{array}{cccc} x_{11} & x_{12} & \ldots & x_{1n}\\ x_{21} & x_{22} & \ldots & x_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ x_{n1} & x_{n2} & \ldots & x_{nn}\\ \end{array} \right) X= x11x21xn1x12x22xn2x1nx2nxnn

    \begin{matrix}
        1 & 2 \\\\ 3 & 4
    \end{matrix} \qquad
    \begin{bmatrix}
        x_{11} & x_{12} & \ldots & x_{1n}\\
        x_{21} & x_{22} & \ldots & x_{2n}\\
        \vdots & \vdots & \ddots & \vdots\\
        x_{n1} & x_{n2} & \ldots & x_{nn}\\
    \end{bmatrix}

1 2 3 4 [ x 11 x 12 … x 1 n x 21 x 22 … x 2 n ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 … x n n ] \begin{matrix} 1 & 2 \\\\ 3 & 4 \end{matrix} \qquad \begin{bmatrix} x_{11} & x_{12} & \ldots & x_{1n}\\ x_{21} & x_{22} & \ldots & x_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ x_{n1} & x_{n2} & \ldots & x_{nn}\\ \end{bmatrix} 1324 x11x21xn1x12x22xn2x1nx2nxnn

Multi-line formula alignment
\begin{split}
L(\theta)
&= \arg\max_{\theta}\ln(P_{All})\\
&= \arg\max_{\theta}\ln\prod_{i=1}^{n}
    \left[
        (h_{\theta}(\mathbf{x}^{(i)}))^{\mathbf{y}^{(i)}}\cdot
        (1-h_{\theta}(\mathbf{x}^{(i)}))^{1-\mathbf{y}^{(i)}}
    \right]\\
&= \arg\max_{\theta}\sum_{i=1}^{n}
   \left[
      \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) +
      (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)}))
   \right]\\
&= \arg\min_{\theta}
   \left[
        -\sum_{i=1}^{n}
        \left[
            \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) +
            (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)}))
        \right]
   \right]\\
&= \arg\min_{\theta}\mathscr{l}(\theta)
\end{split}

L ( θ ) = arg ⁡ max ⁡ θ ln ⁡ ( P A l l ) = arg ⁡ max ⁡ θ ln ⁡ ∏ i = 1 n [ ( h θ ( x ( i ) ) ) y ( i ) ⋅ ( 1 − h θ ( x ( i ) ) ) 1 − y ( i ) ] = arg ⁡ max ⁡ θ ∑ i = 1 n [ y ( i ) ln ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) ln ⁡ ( 1 − h θ ( x ( i ) ) ) ] = arg ⁡ min ⁡ θ [ − ∑ i = 1 n [ y ( i ) ln ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) ln ⁡ ( 1 − h θ ( x ( i ) ) ) ] ] = arg ⁡ min ⁡ θ l ( θ ) \begin{split} L(\theta) &= \arg\max_{\theta}\ln(P_{All})\\ &= \arg\max_{\theta}\ln\prod_{i=1}^{n} \left[ (h_{\theta}(\mathbf{x}^{(i)}))^{\mathbf{y}^{(i)}}\cdot (1-h_{\theta}(\mathbf{x}^{(i)}))^{1-\mathbf{y}^{(i)}} \right]\\ &= \arg\max_{\theta}\sum_{i=1}^{n} \left[ \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) + (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)})) \right]\\ &= \arg\min_{\theta} \left[ -\sum_{i=1}^{n} \left[ \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) + (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)})) \right] \right]\\ &= \arg\min_{\theta}\mathscr{l}(\theta) \end{split} L(θ)=argθmaxln(PAll)=argθmaxlni=1n[(hθ(x(i)))y(i)(1hθ(x(i)))1y(i)]=argθmaxi=1n[y(i)ln(hθ(x(i)))+(1y(i))ln(1hθ(x(i)))]=argθmin[i=1n[y(i)ln(hθ(x(i)))+(1y(i))ln(1hθ(x(i)))]]=argθminl(θ)

\begin{split}
L(\theta)
=  \arg\max_{\theta}\ln(P_{All})\\
=  \arg\max_{\theta}\ln\prod_{i=1}^{n}
    \left[
        (h_{\theta}(\mathbf{x}^{(i)}))^{\mathbf{y}^{(i)}}\cdot
        (1-h_{\theta}(\mathbf{x}^{(i)}))^{1-\mathbf{y}^{(i)}}
    \right]\\
=  \arg\max_{\theta}\sum_{i=1}^{n}
   \left[
      \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) +
      (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)}))
   \right]\\
=  \arg\min_{\theta}
   \left[
        -\sum_{i=1}^{n}
        \left[
            \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) +
            (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)}))
        \right]
   \right]\\
=  \arg\min_{\theta}\mathscr{l}(\theta)
\end{split}

L ( θ ) = arg ⁡ max ⁡ θ ln ⁡ ( P A l l ) = arg ⁡ max ⁡ θ ln ⁡ ∏ i = 1 n [ ( h θ ( x ( i ) ) ) y ( i ) ⋅ ( 1 − h θ ( x ( i ) ) ) 1 − y ( i ) ] = arg ⁡ max ⁡ θ ∑ i = 1 n [ y ( i ) ln ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) ln ⁡ ( 1 − h θ ( x ( i ) ) ) ] = arg ⁡ min ⁡ θ [ − ∑ i = 1 n [ y ( i ) ln ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) ln ⁡ ( 1 − h θ ( x ( i ) ) ) ] ] = arg ⁡ min ⁡ θ l ( θ ) \begin{split} L(\theta) = \arg\max_{\theta}\ln(P_{All})\\ = \arg\max_{\theta}\ln\prod_{i=1}^{n} \left[ (h_{\theta}(\mathbf{x}^{(i)}))^{\mathbf{y}^{(i)}}\cdot (1-h_{\theta}(\mathbf{x}^{(i)}))^{1-\mathbf{y}^{(i)}} \right]\\ = \arg\max_{\theta}\sum_{i=1}^{n} \left[ \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) + (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)})) \right]\\ = \arg\min_{\theta} \left[ -\sum_{i=1}^{n} \left[ \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) + (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)})) \right] \right]\\ = \arg\min_{\theta}\mathscr{l}(\theta) \end{split} L(θ)=argθmaxln(PAll)=argθmaxlni=1n[(hθ(x(i)))y(i)(1hθ(x(i)))1y(i)]=argθmaxi=1n[y(i)ln(hθ(x(i)))+(1y(i))ln(1hθ(x(i)))]=argθmin[i=1n[y(i)ln(hθ(x(i)))+(1y(i))ln(1hθ(x(i)))]]=argθminl(θ)

\begin{split}
&\ln h_{\theta}(\mathbf{x}^{(i)})
=  \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}
=  -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\
&\ln(1-h_{\theta}(\mathbf{x}^{(i)}))
=  \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}})
=  -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}})
\end{split}

ln ⁡ h θ ( x ( i ) ) = ln ⁡ 1 1 + e − θ T x ( i ) = − ln ⁡ ( 1 + e θ T x ( i ) ) ln ⁡ ( 1 − h θ ( x ( i ) ) ) = ln ⁡ ( 1 − 1 1 + e − θ T x ( i ) ) = − θ T x ( i ) − ln ⁡ ( 1 + e θ T x ( i ) ) \begin{split} &\ln h_{\theta}(\mathbf{x}^{(i)}) = \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}} = -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\ &\ln(1-h_{\theta}(\mathbf{x}^{(i)})) = \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}) = -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}}) \end{split} lnhθ(x(i))=ln1+eθTx(i)1=ln(1+eθTx(i))ln(1hθ(x(i)))=ln(11+eθTx(i)1)=θTx(i)ln(1+eθTx(i))

\begin{align}
&\ln h_{\theta}(\mathbf{x}^{(i)})
=  \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}
   = -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\
&\ln(1-h_{\theta}(\mathbf{x}^{(i)}))
=  \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}})
   = -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}})
\end{align}

ln ⁡ h θ ( x ( i ) ) = ln ⁡ 1 1 + e − θ T x ( i ) = − ln ⁡ ( 1 + e θ T x ( i ) ) ln ⁡ ( 1 − h θ ( x ( i ) ) ) = ln ⁡ ( 1 − 1 1 + e − θ T x ( i ) ) = − θ T x ( i ) − ln ⁡ ( 1 + e θ T x ( i ) ) \begin{align} &\ln h_{\theta}(\mathbf{x}^{(i)}) = \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}} = -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\ &\ln(1-h_{\theta}(\mathbf{x}^{(i)})) = \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}) = -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}}) \end{align} lnhθ(x(i))=ln1+eθTx(i)1=ln(1+eθTx(i))ln(1hθ(x(i)))=ln(11+eθTx(i)1)=θTx(i)ln(1+eθTx(i))

Groups of equations
\begin{cases}
    \begin{split}
        p &= P(y=1|\mathbf{x})=
           \frac{1}{1+e^{-\theta^T\mathbf{X}}}\\
        1-p &= P(y=0|\mathbf{x})=1-P(y=1|\mathbf{x})=
           \frac{1}{1+e^{\theta^T\mathbf{X}}}
    \end{split}
\end{cases}

{ p = P ( y = 1 ∣ x ) = 1 1 + e − θ T X 1 − p = P ( y = 0 ∣ x ) = 1 − P ( y = 1 ∣ x ) = 1 1 + e θ T X \begin{cases} \begin{split} p &= P(y=1|\mathbf{x})= \frac{1}{1+e^{-\theta^T\mathbf{X}}}\\ 1-p &= P(y=0|\mathbf{x})=1-P(y=1|\mathbf{x})= \frac{1}{1+e^{\theta^T\mathbf{X}}} \end{split} \end{cases} p1p=P(y=1∣x)=1+eθTX1=P(y=0∣x)=1P(y=1∣x)=1+eθTX1

\text{Decision Boundary}=
\begin{cases}
    1\quad \text{if }\ \hat{y}>0.5\\
    0\quad \text{otherwise}
\end{cases}

Decision Boundary = { 1 if   y ^ > 0.5 0 otherwise \text{Decision Boundary}= \begin{cases} 1\quad \text{if }\ \hat{y}>0.5\\ 0\quad \text{otherwise} \end{cases} Decision Boundary={1if  y^>0.50otherwise


Reference


LaTeX:symbol

LaTeX:command

lshort-zh-cn

优快云:Latex数学公式符号大全(超详细)

优快云:LaTex符号大全(LaTeX_Symbols)


Last

若您发现文中存在任何不准确或错误的地方,欢迎提出宝贵意见,笔者将会尽快修正并改进。同时,若本文中的任何内容无意中侵犯了某些个人或机构的版权或知识产权,笔者深感抱歉,并愿意及时处理相关事宜,删除或修改相关部分。

本笔记内容仅供学习和交流使用,任何商业用途或其他非法使用行为,请务必遵守相关法律法规,并获得原作者授权。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值