一、冒泡排序
基本概念:
依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。至此第一趟结束,将最大的数放到了最后。在第二趟:仍从第一对数开始比较(因为可能由于第2个数和第3个数的交换,使得第1个数不再小于第2个数),将小数放前,大数放后,一直比较到倒数第二个数(倒数第一的位置上已经是最大的),第二趟结束,在倒数第二的位置上得到一个新的最大数(其实在整个数列中是第二大的数)。如此下去,重复以上过程,直至最终完成排序。
实现思路:
用二重循环实现,外循环变量设为i,内循环变量设为j。假如有n个数需要进行排序,则外循环重复n-1次,内循环依次重复n-1,n-2,...,1次。每次进行比较的两个元素都是与内循环j有关的,它们可以分别用a[j]和a[j+1]标识,i的值依次为1,2,...,n-1,对于每一个i,j的值依次为0,1,2,...n-i 。
设数组长度为N:
1.比较相邻的前后二个数据,如果前面数据大于后面的数据,就将二个数据交换。
2.这样对数组的第0个数据到N-1个数据进行一次遍历后,最大的一个数据就“沉”到数组第N-1个位置。
3.N=N-1,如果N不为0就重复前面二步,否则排序完成。
java代码实现:
public static void bubbleSort(int a[]) {
for (int i = 1; i < a.length; i++) { //这是控制趟数
for (int j = 0; j < a.length - i; j++) { //j < a.length - i,比较元素的个数 if (a[j] > a[j + 1]) {
int temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;
}
}
}
}
二、快速排序法:
快速排序是对冒泡排序的一种改进。它的基本思想是:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。一趟快速排序的算法是:
1)、设置两个变量I、J,排序开始的时候I:=1,J:=N;
2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1];
3)、从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;
4)、从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;
5)、重复第3、4步,直到I=J;
例如:待排序的数组A的值分别是:(初始关键数据X:=49)
A[1] A[2] A[3] A[4] A[5] A[6] A[7]:
49 38 65 97 76 13 27
进行第一次交换后: 27 38 65 97 76 13 49
( 按照算法的第三步从后面开始找)
进行第二次交换后: 27 38 49 97 76 13 65
( 按照算法的第四步从前面开始找>X的值,65>49,两者交换,此时I:=3 )
进行第三次交换后: 27 38 13 97 76 49 65
( 按照算法的第五步将又一次执行算法的第三步从后开始找)
进行第四次交换后: 27 38 13 49 76 97 65
( 按照算法的第四步从前面开始找大于X的值,97>49,两者交换,此时J:=4 )
此时再执行第三步的时候就发现I=J,从而结束一躺快速排序,那么经过一躺快速排序之后的结果是:27 38 13 49 76 97 65,即所以大于49的数全部在49的后面,所以小于49的数全部在49的前面。
快速排序就是递归调用此过程——在以49为中点分割这个数据序列,分别对前面一部分和后面一部分进行类似的快速排序,从而完成全部数据序列的快速排序,最后把此数据序列变成一个有序的序列,根据这种思想对于上述数组A的快速排序的全过程如图6所示:
初始状态 {49 38 65 97 76 13 27}
进行一次快速排序之后划分为 {27 38 13} 49 {76 97 65}
分别对前后两部分进行快速排序 {13} 27 {38}
结束 结束 {49 65} 76 {97}
49 {65} 结束
结束
public void quickSort(int[] a, int lo0, int hi0) {
int lo = lo0;
int hi = hi0;
if (lo >= hi)
return;
//确定指针方向的逻辑变量
boolean transfer=true;
while (lo != hi) {
if (a[lo] > a[hi]) {
//交换数字
int temp = a[lo];
a[lo] = a[hi];
a[hi] = temp;
//决定下标移动,还是上标移动
transfer = (transfer == true) ? false : true;
}
//将指针向前或者向后移动
if(transfer)
hi--;
else
lo++;
//显示每一次指针移动的数组数字的变化
/*for(int i = 0; i < a.length; ++i) {
System.out.print(a[i] + ",");
}
System.out.print(" (lo,hi) = " + "(" + lo + "," + hi + ")");
System.out.println("");*/
}
//将数组分开两半,确定每个数字的正确位置
lo--;
hi++;
quickSort(a, lo0, lo);
quickSort(a, hi, hi0);
}
三、二分查找:
算法概念:
二分查找算法也称为折半搜索、二分搜索,是一种在有序数组中查找某一特定元素的搜索算法。请注意这种算法是建立在有序数组基础上的。
算法思想:
①搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;
②如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
③如果在某一步骤数组为空,则代表找不到。
这种搜索算法每一次比较都使搜索范围缩小一半。
三、实现思路:
①找出位于数组中间的值,并存放在一个变量中(为了下面的说明,变量暂时命名为temp);
②需要找到的key和temp进行比较;
③如果key值大于temp,则把数组中间位置作为下一次计算的起点;重复① ②。
④如果key值小于temp,则把数组中间位置作为下一次计算的终点;重复① ② ③。
⑤如果key值等于temp,则返回数组下标,完成查找。
public void find(int liftIndex,int reghtIndex,int val,int arr[])
{
/*
* liftIndex 最左边的下标
* reghtIndex 最右边的下标
* val 要查找的数
* midIndex 中间数的下标
*/
int midIndex=(liftIndex+reghtIndex)/2;
if(liftIndex<=reghtIndex)
{
//比较
//如果要查找的数比中间的数大则接下来在右边找
if(val>arr[midIndex])
{
find(midIndex+1,reghtIndex,val,arr);
}
//如果要查找的数比中间的数小则接下来在左边找
else if(val<arr[midIndex])
{
find(liftIndex,midIndex-1,val,arr);
}
//如果刚好相等,则找到了
else if(val==arr[midIndex])
{
System.out.println("找到"+val+"了,是第"+(midIndex+1)+"个数字");
}
}
}
基本概念:
依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。至此第一趟结束,将最大的数放到了最后。在第二趟:仍从第一对数开始比较(因为可能由于第2个数和第3个数的交换,使得第1个数不再小于第2个数),将小数放前,大数放后,一直比较到倒数第二个数(倒数第一的位置上已经是最大的),第二趟结束,在倒数第二的位置上得到一个新的最大数(其实在整个数列中是第二大的数)。如此下去,重复以上过程,直至最终完成排序。
实现思路:
用二重循环实现,外循环变量设为i,内循环变量设为j。假如有n个数需要进行排序,则外循环重复n-1次,内循环依次重复n-1,n-2,...,1次。每次进行比较的两个元素都是与内循环j有关的,它们可以分别用a[j]和a[j+1]标识,i的值依次为1,2,...,n-1,对于每一个i,j的值依次为0,1,2,...n-i 。
设数组长度为N:
1.比较相邻的前后二个数据,如果前面数据大于后面的数据,就将二个数据交换。
2.这样对数组的第0个数据到N-1个数据进行一次遍历后,最大的一个数据就“沉”到数组第N-1个位置。
3.N=N-1,如果N不为0就重复前面二步,否则排序完成。
java代码实现:
public static void bubbleSort(int a[]) {
for (int i = 1; i < a.length; i++) { //这是控制趟数
for (int j = 0; j < a.length - i; j++) { //j < a.length - i,比较元素的个数 if (a[j] > a[j + 1]) {
int temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;
}
}
}
}
二、快速排序法:
快速排序是对冒泡排序的一种改进。它的基本思想是:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。一趟快速排序的算法是:
1)、设置两个变量I、J,排序开始的时候I:=1,J:=N;
2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1];
3)、从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;
4)、从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;
5)、重复第3、4步,直到I=J;
例如:待排序的数组A的值分别是:(初始关键数据X:=49)
A[1] A[2] A[3] A[4] A[5] A[6] A[7]:
49 38 65 97 76 13 27
进行第一次交换后: 27 38 65 97 76 13 49
( 按照算法的第三步从后面开始找)
进行第二次交换后: 27 38 49 97 76 13 65
( 按照算法的第四步从前面开始找>X的值,65>49,两者交换,此时I:=3 )
进行第三次交换后: 27 38 13 97 76 49 65
( 按照算法的第五步将又一次执行算法的第三步从后开始找)
进行第四次交换后: 27 38 13 49 76 97 65
( 按照算法的第四步从前面开始找大于X的值,97>49,两者交换,此时J:=4 )
此时再执行第三步的时候就发现I=J,从而结束一躺快速排序,那么经过一躺快速排序之后的结果是:27 38 13 49 76 97 65,即所以大于49的数全部在49的后面,所以小于49的数全部在49的前面。
快速排序就是递归调用此过程——在以49为中点分割这个数据序列,分别对前面一部分和后面一部分进行类似的快速排序,从而完成全部数据序列的快速排序,最后把此数据序列变成一个有序的序列,根据这种思想对于上述数组A的快速排序的全过程如图6所示:
初始状态 {49 38 65 97 76 13 27}
进行一次快速排序之后划分为 {27 38 13} 49 {76 97 65}
分别对前后两部分进行快速排序 {13} 27 {38}
结束 结束 {49 65} 76 {97}
49 {65} 结束
结束
public void quickSort(int[] a, int lo0, int hi0) {
int lo = lo0;
int hi = hi0;
if (lo >= hi)
return;
//确定指针方向的逻辑变量
boolean transfer=true;
while (lo != hi) {
if (a[lo] > a[hi]) {
//交换数字
int temp = a[lo];
a[lo] = a[hi];
a[hi] = temp;
//决定下标移动,还是上标移动
transfer = (transfer == true) ? false : true;
}
//将指针向前或者向后移动
if(transfer)
hi--;
else
lo++;
//显示每一次指针移动的数组数字的变化
/*for(int i = 0; i < a.length; ++i) {
System.out.print(a[i] + ",");
}
System.out.print(" (lo,hi) = " + "(" + lo + "," + hi + ")");
System.out.println("");*/
}
//将数组分开两半,确定每个数字的正确位置
lo--;
hi++;
quickSort(a, lo0, lo);
quickSort(a, hi, hi0);
}
三、二分查找:
算法概念:
二分查找算法也称为折半搜索、二分搜索,是一种在有序数组中查找某一特定元素的搜索算法。请注意这种算法是建立在有序数组基础上的。
算法思想:
①搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;
②如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
③如果在某一步骤数组为空,则代表找不到。
这种搜索算法每一次比较都使搜索范围缩小一半。
三、实现思路:
①找出位于数组中间的值,并存放在一个变量中(为了下面的说明,变量暂时命名为temp);
②需要找到的key和temp进行比较;
③如果key值大于temp,则把数组中间位置作为下一次计算的起点;重复① ②。
④如果key值小于temp,则把数组中间位置作为下一次计算的终点;重复① ② ③。
⑤如果key值等于temp,则返回数组下标,完成查找。
public void find(int liftIndex,int reghtIndex,int val,int arr[])
{
/*
* liftIndex 最左边的下标
* reghtIndex 最右边的下标
* val 要查找的数
* midIndex 中间数的下标
*/
int midIndex=(liftIndex+reghtIndex)/2;
if(liftIndex<=reghtIndex)
{
//比较
//如果要查找的数比中间的数大则接下来在右边找
if(val>arr[midIndex])
{
find(midIndex+1,reghtIndex,val,arr);
}
//如果要查找的数比中间的数小则接下来在左边找
else if(val<arr[midIndex])
{
find(liftIndex,midIndex-1,val,arr);
}
//如果刚好相等,则找到了
else if(val==arr[midIndex])
{
System.out.println("找到"+val+"了,是第"+(midIndex+1)+"个数字");
}
}
}