least(exp1,exp2,exp3,……,expn)

本文介绍了least函数的功能及用法,该函数用于返回多个表达式中值最小的一个,并支持不同类型间的隐式转换。通过示例展示了如何在SQL查询中使用least函数。
least(exp1,exp2,exp3,……,expn)
【功能】返回表达式列表中值最小的一个。如果表达式类型不同,会隐含转换为第一个表达式类型。
【参数】exp1……n,各类型表达式
【返回】exp1类型

【示例】
  SELECT least(10,32,'123','2006') FROM dual;

SELECT least('kdnf','dfd','a','206') FROM dual;
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import argparse import random import warnings from loguru import logger import torch import torch.backends.cudnn as cudnn from yolox.core import launch from yolox.exp import Exp, check_exp_value, get_exp from yolox.utils import configure_module, configure_nccl, configure_omp, get_num_devices def make_parser(): parser = argparse.ArgumentParser("YOLOX train parser") parser.add_argument("-expn", "--experiment-name", type=str, default=None) parser.add_argument("-n", "--name", type=str, default=None, help="model name") # distributed parser.add_argument( "--dist-backend", default="nccl", type=str, help="distributed backend" ) parser.add_argument( "--dist-url", default=None, type=str, help="url used to set up distributed training", ) parser.add_argument("-b", "--batch-size", type=int, default=64, help="batch size") parser.add_argument( "-d", "--devices", default=None, type=int, help="device for training" ) parser.add_argument( "-f", "--exp_file", default=None, type=str, help="plz input your experiment description file", ) parser.add_argument( "--resume", default=False, action="store_true", help="resume training" ) parser.add_argument("-c", "--ckpt", default=None, type=str, help="checkpoint file") parser.add_argument( "-e", "--start_epoch", default=None, type=int, help="resume training start epoch", ) parser.add_argument( "--num_machines", default=1, type=int, help="num of node for training" ) parser.add_argument( "--machine_rank", default=0, type=int, help="node rank for multi-node training" ) parser.add_argument( "--fp16", dest="fp16", default=False, action="store_true", help="Adopting mix precision training.", ) parser.add_argument( "--cache", type=str, nargs="?", const="ram", help="Caching imgs to ram/disk for fast training.", ) parser.add_argument( "-o", "--occupy", dest="occupy", default=False, action="store_true", help="occupy GPU memory first for training.", ) parser.add_argument( "-l", "--logger", type=str, help="Logger to be used for metrics. \ Implemented loggers include `tensorboard` and `wandb`.", default="tensorboard" ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) return parser @logger.catch def main(exp: Exp, args): if exp.seed is not None: random.seed(exp.seed) torch.manual_seed(exp.seed) cudnn.deterministic = True warnings.warn( "You have chosen to seed training. This will turn on the CUDNN deterministic setting, " "which can slow down your training considerably! You may see unexpected behavior " "when restarting from checkpoints." ) # set environment variables for distributed training configure_nccl() configure_omp() cudnn.benchmark = True trainer = exp.get_trainer(args) trainer.train() if __name__ == "__main__": configure_module() args = make_parser().parse_args() exp = get_exp(args.exp_file, args.name) exp.merge(args.opts) check_exp_value(exp) if not args.experiment_name: args.experiment_name = exp.exp_name num_gpu = get_num_devices() if args.devices is None else args.devices assert num_gpu <= get_num_devices() if args.cache is not None: exp.dataset = exp.get_dataset(cache=True, cache_type=args.cache) dist_url = "auto" if args.dist_url is None else args.dist_url launch( main, num_gpu, args.num_machines, args.machine_rank, backend=args.dist_backend, dist_url=dist_url, args=(exp, args), )  利用这个代码,不使用预训练权重,只使用我们的目标任务数据训练学生模型权重,用于后面的蒸馏可以实现吗
06-25
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值