求前n个欧拉函数和,n<=10^10
关于积性函数的前缀和见糖老师博客
http://blog.youkuaiyun.com/skywalkert/article/details/50500009
预处理出前500w个欧拉函数前缀和后还需要线性筛一下。用map记录一下搜过的值(可认为记忆化搜索)
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define LL __int64
#define maxn 5000007
#define mod 1000000007
#define ni 500000004
map<LL,LL>mp;
bool isprime[maxn+5];
int prime[maxn+5];
int phi[maxn+5];
LL sum[maxn+5];
int cnt;
void Eular()
{
cnt=0;
phi[1]=1;
for(int i=2; i<=maxn; i++)
{
if(!isprime[i])
{
phi[i]=i-1;
prime[++cnt]=i;
}
for(int j=1; j<=cnt; j++)
{
if(i*prime[j]>maxn)
break;
isprime[i*prime[j]]=true;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
{
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
sum[0]=0;
for(int i=1; i<=maxn; i++)
{
sum[i]=(sum[i-1]+phi[i])%mod;
}
}
LL get_sum(LL m)
{
if(!m)return 0;
if(m<maxn)return sum[m];
if(mp.count(m))return mp[m];
LL &ans=mp[m];
for (LL i = 2, j ; i <= m ; i = j + 1LL )
{
j = m / ( m / i ) ;
ans = ( ans + 1LL * ( j - i + 1LL )%mod* get_sum(m / i)%mod ) % mod ;
}
return ans = ( m%mod * ( m%mod+ 1LL )%mod *ni%mod - ans + mod ) % mod ;
}
int main()
{
Eular();
LL n;
while(scanf("%I64d",&n)!=EOF)
{
printf("%I64d\n",get_sum(n));
}
return 0;
}