| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 36777 | Accepted: 17218 | |
| Case Time Limit: 2000MS | ||
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2.. N+ Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 3 1 7 3 4 2 5 1 5 4 6 2 2
Sample Output
6 3 0
Source
查询区间最大值和最小值的差。查询最值,用线段树或者sparse table,这里不涉及到更新的操作,而且查询次数Q范围比n大,所以用st做就好了
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
#define maxn 50005
int arr[maxn];
int stmax[maxn][17], stmin[maxn][17];
int n, q;
void init()
{
for(int i = 0; i < n; i++)
stmax[i][0] = stmin[i][0] = arr[i];
for(int j = 1; (1<<j)-1 < n; j++){
for(int i = 0; i+(1<<j)-1 < n; i++){
stmax[i][j] = max(stmax[i][j-1], stmax[i+(1<<(j-1))][j-1]);
stmin[i][j] = min(stmin[i][j-1], stmin[i+(1<<(j-1))][j-1]);
}
}
}
int main()
{
while(~scanf("%d%d", &n, &q)){
for(int i = 0; i < n; i++)
scanf("%d", arr+i);
init();
int a, b;
for(int i = 0; i < q; i++){
scanf("%d%d", &a, &b);
a--; b--;
int t = log(b-a+0.0)/log(2.0);
int maxi = max(stmax[a][t],stmax[b-(1<<t)+1][t]);
int mini = min(stmin[a][t], stmin[b-(1<<t)+1][t]);
printf("%d\n", maxi-mini);
}
}
return 0;
}
本文介绍了如何利用线段树(Sparse Table)解决给定范围内牛群高度差值的查询问题,包括输入解析、初始化线段树、区间查询等关键步骤。通过实例演示了算法实现过程,并提供了源代码。适用于需要高效处理区间查询场景的开发者。

被折叠的 条评论
为什么被折叠?



