uva-216 - Getting in Line

本文探讨了一种优化电脑网络布线的方法,旨在通过合理布局减少电缆使用量,从而降低成本。文章详细介绍了如何将电脑按最优路径连接成链状网络,并提供了一个具体的案例分析。

Computer networking requires that the computers in the network be linked.

This problem considers a ``linear" network in which the computers are chained together so that each is connected to exactly two others except for the two computers on the ends of the chain which are connected to only one other computer. A picture is shown below. Here the computers are the black dots and their locations in the network are identified by planar coordinates (relative to a coordinate system not shown in the picture).

Distances between linked computers in the network are shown in feet.

For various reasons it is desirable to minimize the length of cable used.

Your problem is to determine how the computers should be connected into such a chain to minimize the total amount of cable needed. In the installation being constructed, the cabling will run beneath the floor, so the amount of cable used to join 2 adjacent computers on the network will be equal to the distance between the computers plus 16 additional feet of cable to connect from the floor to the computers and provide some slack for ease of installation.

The picture below shows the optimal way of connecting the computers shown above, and the total length of cable required for this configuration is (4+16)+ (5+16) + (5.83+16) + (11.18+16) = 90.01 feet.

Input

The input file will consist of a series of data sets. Each data set will begin with a line consisting of a single number indicating the number of computers in a network. Each network has at least 2 and at most 8 computers. A value of 0 for the number of computers indicates the end of input.

After the initial line in a data set specifying the number of computers in a network, each additional line in the data set will give the coordinates of a computer in the network. These coordinates will be integers in the range 0 to 150. No two computers are at identical locations and each computer will be listed once.

Output

The output for each network should include a line which tells the number of the network (as determined by its position in the input data), and one line for each length of cable to be cut to connect each adjacent pair of computers in the network. The final line should be a sentence indicating the total amount of cable used.

In listing the lengths of cable to be cut, traverse the network from one end to the other. (It makes no difference at which end you start.) Use a format similar to the one shown in the sample output, with a line of asterisks separating output for different networks and with distances in feet printed to 2 decimal places.

Sample Input

6
5 19
55 28
38 101
28 62
111 84
43 116
5
11 27
84 99
142 81
88 30
95 38
3
132 73
49 86
72 111
0

Sample Output

**********************************************************
Network #1
Cable requirement to connect (5,19) to (55,28) is 66.80 feet.
Cable requirement to connect (55,28) to (28,62) is 59.42 feet.
Cable requirement to connect (28,62) to (38,101) is 56.26 feet.
Cable requirement to connect (38,101) to (43,116) is 31.81 feet.
Cable requirement to connect (43,116) to (111,84) is 91.15 feet.
Number of feet of cable required is 305.45.
**********************************************************
Network #2
Cable requirement to connect (11,27) to (88,30) is 93.06 feet.
Cable requirement to connect (88,30) to (95,38) is 26.63 feet.
Cable requirement to connect (95,38) to (84,99) is 77.98 feet.
Cable requirement to connect (84,99) to (142,81) is 76.73 feet.
Number of feet of cable required is 274.40.
**********************************************************
Network #3
Cable requirement to connect (132,73) to (72,111) is 87.02 feet.
Cable requirement to connect (72,111) to (49,86) is 49.97 feet.
Number of feet of cable required is 136.99.

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
using namespace std;

int arr[8];
int ans[8];

int x[8], y[8];

double dist(int a, int b)
{
    return sqrt((x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
}

int main()
{
    int n;
    int cases = 1;
    while(cin >> n){
        if(!n) break;


        for(int i = 0; i < n; i++){
            cin >> x[i] >> y[i];
            arr[i] = i;
        }

        double mini = 1000000;
        double distance;
        do{
            distance = 0;
            for(int i = 0; i < n-1; i++)
                distance += dist(arr[i], arr[i+1]);

            if(distance < mini){
                mini = distance;
                for(int i = 0; i < n; i++)
                    ans[i] = arr[i];
            }
        }while(next_permutation(arr, arr+n));

        cout << "**********************************************************" << endl;
        cout << "Network #" << cases++ << endl;
        for(int i = 0; i < n-1; i++)
            printf("Cable requirement to connect (%d,%d) to (%d,%d) is %.2f feet.\n", x[ans[i]], y[ans[i]]
                   , x[ans[i+1]], y[ans[i+1]], dist(ans[i], ans[i+1])+16);
        printf("Number of feet of cable required is %.2f.\n", mini+(n-1)*16);
    }
    return 0;
}





这个是完整源码 python实现 Django 【python毕业设计】基于Python的天气预报(天气预测分析)(Django+sklearn机器学习+selenium爬虫)可视化系统.zip 源码+论文+sql脚本 完整版 数据库是mysql 本研究旨在开发一个基于Python的天气预报可视化系统,该系统结合了Django框架、sklearn机器学习库和Selenium爬虫技术,实现对天气数据的收集、分析和可视化。首先,我们使用Selenium爬虫技术从多个天气数据网站实时抓取气象数据,包括温度、湿度、气压、风速等多项指标。这些数据经过清洗和预处理后本研究旨在开发一个基于Python的天气预报可视化系统,该系统结合了Django框架、sklearn机器学习库和Selenium爬虫技术,实现对天气数据的收集、分析和可视化。首先,我们使用Selenium爬虫技术从多个天气数据网站实时抓取气象数据,包括温度、湿度、气压、风速等多项指标。这些数据经过清洗和预处理后,将其存储在后端数据库中,以供后续分析。 其次,采用s,将其存储在后端数据库中,以供后续分析。 其次,采用sklearn机器学习库构建预测模型,通过时间序列分析和回归方法,对未来天气情况进行预测。我们利用以往的数据训练模型,以提高预测的准确性。通过交叉验证和超参数优化等技术手段,我们优化了模型性能,确保其在实际应用中的有效性和可靠性。 最后,基于Django框架开发前端展示系统,实现天气预报的可视化。用户可以通过友好的界面查询实时天气信息和未来几天内的天气预测。系统还提供多种图表类型,包括折线图和柱状图,帮助用户直观理解天气变化趋势。 本研究的成果为天气预报领域提供了一种新的技术解决方案,不仅增强了数据获取和处理的效率,还提升了用户体验。未来,该系统能够扩展至其他气象相关的应用场景,为大众提供更加准确和及时的气象服务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值