Codeforces Round #305 (Div. 2)C---Mike and Frog(扩欧+乱搞)

本文探讨了一种算法,用于解决在特定周期性问题中找到最小时间的问题,该问题涉及两个不同对象的高度变化,遵循特定的循环周期。通过输入参数设定初始高度和周期性变化的系数,算法能够计算出达到指定高度所需的最短时间,或判断是否无法实现这一目标。此研究适用于竞争编程等领域的周期性问题解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mike has a frog and a flower. His frog is named Xaniar and his flower is named Abol. Initially(at time 0), height of Xaniar is h1 and height of Abol is h2. Each second, Mike waters Abol and Xaniar.

So, if height of Xaniar is h1 and height of Abol is h2, after one second height of Xaniar will become and height of Abol will become where x1, y1, x2 and y2 are some integer numbers and denotes the remainder of a modulo b.

Mike is a competitive programmer fan. He wants to know the minimum time it takes until height of Xania is a1 and height of Abol is a2.

Mike has asked you for your help. Calculate the minimum time or say it will never happen.
Input

The first line of input contains integer m (2 ≤ m ≤ 106).

The second line of input contains integers h1 and a1 (0 ≤ h1, a1 < m).

The third line of input contains integers x1 and y1 (0 ≤ x1, y1 < m).

The fourth line of input contains integers h2 and a2 (0 ≤ h2, a2 < m).

The fifth line of input contains integers x2 and y2 (0 ≤ x2, y2 < m).

It is guaranteed that h1 ≠ a1 and h2 ≠ a2.
Output

Print the minimum number of seconds until Xaniar reaches height a1 and Abol reaches height a2 or print -1 otherwise.
Sample test(s)
Input

5
4 2
1 1
0 1
2 3

Output

3

Input

1023
1 2
1 0
1 2
1 1

Output

-1

Note

In the first sample, heights sequences are following:

Xaniar:

Abol:

m次以内一定有循环节,否则没周期
所以可以搞出循环节,之后可以得到一个二元一次方程,扩欧求解
找一个最小解即可

/*************************************************************************
    > File Name: C.cpp
    > Author: ALex
    > Mail: zchao1995@gmail.com 
    > Created Time: 2015年05月27日 星期三 16时15分01秒
 ************************************************************************/

#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <map>
#include <bitset>
#include <set>
#include <vector>

using namespace std;

const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;

int vis[1001010];

void ex_gcd(int a, int b, int &x, int &y) {
    if (!b) {
        x = 1;
        y = 0;
    }
    else {
        ex_gcd(b, a % b, y, x);
        y -= x * (a / b);
    }
}

int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}

int main() {
    int m;
    while (~scanf("%d", &m)) {
        int h1, a1, x1, y1;
        int h2, a2, x2, y2;
        scanf("%d%d%d%d", &h1, &a1, &x1, &y1);
        scanf("%d%d%d%d", &h2, &a2, &x2, &y2);
        for (int i = 0; i <= m; ++i) {
            vis[i] = -1;
        }
        int s1 = -1;
        vis[h1] = 0;
        LL cur = h1;
        int len1 = 0;
        for (int i = 1; i <= m; ++i) {
            cur = (cur * x1 + y1) % m;
            if (vis[cur] == -1) {
                vis[cur] = i;
                if (cur == a1) {
                    s1 = i;
                }
            }
            else {
                len1 = i - vis[cur];
                break;
            }
        }
        if (s1 == -1) {
            printf("-1\n");
            continue;
        }
        cur = a1;
        bool flag1 = 0;
        for (int i = s1 + 1; i <= len1 + s1; ++i) {
            cur = (cur * x1 + y1) % m;
        }
        if (cur == a1) {
            flag1 = 1;
        }
        cur = h2;
        int len2 = 0;
        int s2 = -1;
        for (int i = 0; i <= m; ++i) {
            vis[i] = -1;
        }
        vis[h2] = 0;
        for (int i = 1; i <= m;++i) {
            cur = (cur * x2 + y2) % m;
            if (vis[cur] == -1) {
                vis[cur] = i;
                if (cur == a2) {
                    s2 = i;
                }
            }
            else {
                len2 = i - vis[cur];
                break;
            }   
        }
        if (s2 == -1) {
            printf("-1\n");
            continue;
        }
        bool flag2 = 0;
        cur = a2;
        for (int i = s2 + 1; i <= s2 + len2; ++i) {
            cur = (cur * x2 + y2) % m;
        }
        if (cur == a2) {
            flag2 = 1;
        }
        if (!flag1 && !flag2) {
            if (s1 == s2) {
                printf("%d\n", s1);
            }
            else {
                printf("-1\n");
            }
            continue;
        }
        if (!flag1 && flag2) {
            if (s1 < s2) {
                printf("-1\n");
            }
            else {
                if ((s1 - s2) % len2) {
                    printf("-1\n");
                }
                else {
                    printf("%d\n", s1);
                }
            }
            continue;
        }
        if (flag1 && !flag2) {
            if (s1 > s2) {
                printf("-1\n");
            }
            else {
                if ((s2 - s1) % len1) {
                    printf("-1\n");
                }
                else {
                    printf("%d\n", s2);
                }
            }
            continue;
        }
        int GCD = gcd(len1, len2);
        if ((s2 - s1) % GCD) {
            printf("-1\n");
            continue;
        }
        int x0, y0;
        ex_gcd(len1, len2, x0, y0);
        x0 = x0 * (s2 - s1) / GCD;
        y0 *= -1;
        y0 = y0 * (s2 - s1) / GCD;
        int b = len2 / GCD;
        int a = len1 / GCD;
        if (x0 < 0) {
            LL k = ceil(-1.0 * x0 / b);
            x0 += k * b;
            y0 += k * a;
        }
        if (y0 < 0) {
            LL k = ceil(-1.0 * y0 / a);
            x0 += k * b;
            y0 += k * a;
        }
        LL ans = (LL)y0 * len2 + s2;
        while (1) {
            if (y0 - a >= 0) {
                y0 -= a;
                x0 -= b;
                ans = (LL)y0 * len2 + s2;
            }
            else {
                break;
            }
        }
        cout << ans << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值