hdu3518---Boring counting(后缀数组,对后缀分组)

Problem Description
035 now faced a tough problem,his english teacher gives him a string,which consists with n lower case letter,he must figure out how many substrings appear at least twice,moreover,such apearances can not overlap each other.
Take aaaa as an example.”a” apears four times,”aa” apears two times without overlaping.however,aaa can’t apear more than one time without overlaping.since we can get “aaa” from [0-2](The position of string begins with 0) and [1-3]. But the interval [0-2] and [1-3] overlaps each other.So “aaa” can not take into account.Therefore,the answer is 2(“a”,and “aa”).

Input
The input data consist with several test cases.The input ends with a line “#”.each test case contain a string consists with lower letter,the length n won’t exceed 1000(n <= 1000).

Output
For each test case output an integer ans,which represent the answer for the test case.you’d better use int64 to avoid unnecessary trouble.

Sample Input

aaaa
ababcabb
aaaaaa
#

Sample Output

2
3
3

Source
2010 ACM-ICPC Multi-University Training Contest(9)——Host by HNU

Recommend

求出字符串的后缀数组,枚举长度,然后对后缀分组,由于每一组的后缀它们的排名连续,因此它们拥有相同的一段前缀,这样就不会产生重复计数问题,注意记录每一组后缀里,出现的最靠前的和最靠后的后缀位置,差不多1000*500的复杂度

/*************************************************************************
    > File Name: HDU3518.cpp
    > Author: ALex
    > Mail: zchao1995@gmail.com 
    > Created Time: 2015年04月09日 星期四 13时35分42秒
 ************************************************************************/

#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <map>
#include <bitset>
#include <set>
#include <vector>

using namespace std;

const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;

class SuffixArray
{
    public:
        static const int N = 1200;
        int init[N];
        int X[N];
        int Y[N];
        int Rank[N];
        int sa[N];
        int height[N];
        int buc[N];
        int size;

        void clear()
        {
            size = 0;
        }

        void insert(int n)
        {
            init[size++] = n;
        }

        bool cmp(int *r, int a, int b, int l)
        {
            return (r[a] == r[b] && r[a + l] == r[b + l]);
        }

        void getsa(int m = 256)
        {
            init[size] = 0;
            int l, p, *x = X, *y = Y, n = size + 1;
            for (int i = 0; i < m; ++i)
            {
                buc[i] = 0;
            }
            for (int i = 0; i < n; ++i)
            {
                ++buc[x[i] = init[i]];
            }
            for (int i = 1; i < m; ++i)
            {
                buc[i] += buc[i - 1];
            }
            for (int i = n - 1; i >= 0; --i)
            {
                sa[--buc[x[i]]] = i;
            }
            for (l = 1, p = 1; l <= n && p < n; m = p, l *= 2)
            {
                p = 0;
                for (int i = n - l; i < n; ++i)
                {
                    y[p++] = i;
                }
                for (int i = 0;i < n; ++i)
                {
                    if (sa[i] >= l)
                    {
                        y[p++] = sa[i] - l;
                    }
                }
                for (int i = 0; i < m; ++i)
                {
                    buc[i] = 0;
                }
                for (int i = 0; i < n; ++i)
                {
                    ++buc[x[y[i]]];
                }
                for (int i = 1; i < m; ++i)
                {
                    buc[i] += buc[i - 1];
                }
                for (int i = n - 1; i >= 0; --i)
                {
                    sa[--buc[x[y[i]]]] = y[i];
                }
                int i;
                for (swap(x, y), x[sa[0]] = 0, p = 1, i = 1; i < n; ++i)
                {
                    x[sa[i]] = cmp(y, sa[i - 1], sa[i], l) ? p - 1 : p++;
                }
            }
        }

        void getheight()
        {
            int h = 0, n = size;
            for (int i = 0; i <= n; ++i)
            {
                Rank[sa[i]] = i;
            }
            height[0] = 0;
            for (int i = 0; i < n; ++i)
            {
                if (h > 0)
                {
                    --h;
                }
                int j =sa[Rank[i] - 1];
                for (; i + h < n && j + h < n && init[i + h] == init[j + h]; ++h);
                height[Rank[i] - 1] = h;
            }
        }

        void solve()
        {
            int ans = 0;
            for (int i = 1; i <= size / 2; ++i)
            {
                int il = sa[1], ir = sa[1];
                for (int j = 1; j < size; ++j)
                {
                    if (height[j] >= i)
                    {
                        il = min(il, sa[j + 1]);
                        ir = max(ir, sa[j + 1]);
                    }
                    else
                    {
                        if (ir - il >= i)
                        {
                            ++ans;
                        }
                        ir = il = sa[j + 1];
                    }
                }
                if (ir - il >= i)
                {
                    ++ans;
                }
            }
            printf("%d\n", ans);
        }
}SA;

char str[1200];

int main()
{
    while (~scanf("%s", str))
    {
        if (str[0] == '#')
        {
            break;
        }
        SA.clear();
        int len = strlen(str);
        for (int i = 0; i < len; ++i)
        {
            SA.insert(str[i] - 'a' + 1);
        }
        SA.getsa(30);
        SA.getheight();
        SA.solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值