NBUT Summer Contest-2 题解报告

本文深入探讨了编程领域中多个关键技术点,包括前端开发、后端开发、移动开发、游戏开发、大数据开发等,通过实例解析和代码展示,帮助开发者深入理解并掌握这些核心概念。
    • [A] 想减肥的字符串

      • 问题描述
      • 从前,有一串很长很长的字符串,它由n个小写字母组成。有一天它在照镜子的时候,觉得自己太肥了,于是它想减肥。减肥的时候,可以不断地去掉第一个或者最后一个字符。它希望自己减肥之后,对于小写字母abc,自己身上都至少保留有一个。它想知道自己减肥后的最小长度,你能帮帮它吗?

      • 输入
      • 每行有一串由小写字母组成的字符串,字符串的长度n < 1000。保证字符串中包含有小写字母a、b、c
      • 输出
      • 每行输出一个数字,表示该组数据求得的最小长度。
      • 样例输入
      • ccbaa
        abbbbbbbbbc
        
      • 样例输出
      • 3
        11
        
      • 提示
      • 来源
      • CSL

      思路:

      由于只有abc三个字符,当输入字符串后,从头开始遍历整个字符串,每次遇到字符假设为’a’,都判断之前是否出现过’b’, ‘c’,如果有,计算出包含’a’’b’’c’的该串的长度并与之前保存的结果进行比较即可,然后再记录下当前字符’a’出现的下标,以供进行下次的判断。只进行一次遍历操作,因此时间复杂度是o(strlen(str)


    扩展:

    当必须包含的字符为多个时,可以用map建立下标与相应字符的映射,set来储存出现过的字符,顺便加一个计数器计算当前出现过的字符个数,再进行与上面类似的操作即可。


    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    char c[1010];
    int main()
    {
    while(~scanf("%s", c))
    {
    int ans = 9999999;
    int pos_a = -1, pos_b = -1, pos_c = -1;
    int n = strlen(c);
    for(int i = 0; i < n; i++)
    {
    if(c[i] == 'a')
    {
    pos_a = i;
    if(pos_c != -1 && pos_b != -1)
    {
    int l;
    l = min(pos_b, pos_c);
    ans = min(ans, i-l);
    }
    }
    else if(c[i] == 'b')
    {
    pos_b = i;
    if(pos_c != -1 && pos_a != -1)
    {
    int l;
    l = min(pos_c, pos_a);
    ans = min(ans, i-l);
    }
    }
    else if(c[i] == 'c')
    {
    pos_c = i;
    if(pos_a != -1 && pos_b != -1)
    {
    int l;
    l = min(pos_b, pos_a);
    ans = min(ans, i-l);
    }
    }
    }
    //printf("%d %d %d\n", q, w, e);
    printf("%d\n", ans + 1);
    }
    return 0;
    }




    [B] I love math

    • 问题描述
    • 给定一个正整数N,求1/X+1/Y= 1/N的所有正整数解,N最大为999999999,求方程解的个数.
    • 输入
    • 第一行有一个T,表示数据组数。T <= 100
      接下来有T行,每行有一个正整数N,N <= 999999999
    • 输出
    • 对于每个N,输出对应解的个数。
    • 样例输入
    • 2
      1
      2
      
    • 样例输出
    • 1
      3
    • 提示
    • 当N为2时,(4,4),(3,6),(6,3)都是满足的。
    • 来源
    • 本站或者转载
    数论题,对于1/X + 1/Y =1/N,将X看成N+R,Y看成N+S,因为X,Y显然都大于N。最后化简可以得到N^2=R*S
    那么我们将N进行质因数分解。得到P1^K1 * P2^K2 * P3^K3 *.........分成两部分显然有(k1+1)*(k2+1)*.......
    N^2也一样。
    那么答案就是这个组合方案数了


    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #include<math.h>

    int main()
    {
    int n,t;
    while(~scanf("%d",&t))
    {
    while(t--)
    {
    scanf("%d",&n);
    int ans=1;
    double temp=(double)(sqrt(n)+1);
    for(int i=2; i<=temp; i++)
    {

    if(n%i==0)
    {
    int b=0;
    while(n%i==0)
    {
    b++;
    n/=i;
    }
    ans*=2*b+1;
    }
    }
    if(n!=1)
    ans*=3;
    printf("%d\n",ans);
    }
    }
    return 0;
    }





                                              C题暂时无题解。 

    • [D] 字符串大配对


    • 问题描述
    • 字符最近骚动起来了,大热天的,空调都不给力,还要每天被你们敲敲敲,次奥,不能忍,他们决定找个对象就私!!!奔!!!
      字符'['只喜欢']'站在他右边,当然']'也只喜欢'['站他左边,'('和')'同样如此.
      所以如果他们站成这样"][",他们的缘分只能等下辈子啦.
      每行有一串字符串只包含'(',')','[',']'.长度不会超过100000.
      任意一对匹配后,就私奔到月球了!!!
    • 输入
    • 每行输入一串字符串str. len <= 100000
    • 输出
    • 请问有多少个私奔了!!!告诉他们麻麻去.
    • 样例输入
    • ((()))
      ([]])
      ([)]
      []()
      )[)(
    • 样例输出
    • 6
      4
      4
      4
      0
    • 提示
    • 来源
    • zyvas


    水题。从样例那边可以看得出,输入的时候当分别记录下‘(’和‘[’的数量,当输入‘(’或‘]’的时候,进行判断有没有对应的括号就行了。




    #include<stdio.h>

    #include<string.h>


    int main()

    {

           char a;

           while(~scanf("%c",&a))

           {

                  int ans = 0;

                  int c[4];

                  memset(c, 0, sizeof(c));

                  //mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:"Times New Roman";" >输入预处理下就好

                  if(a == '[')

                  {

                        c[0]++;

                  }

                  else if(a == '(')

                  {

                         c[2]++;

                  }

                  while((a = getchar()) != '\n')

                  {

                        if(a== '[')

                         {

                                c[0]++;

                         }

                         else if(a == ']')

                         {

                                if(c[0] > 0)

                                {

                                       ans+= 2;

                                       c[0]--;

                                }

                         }

                         if(a== '(')

                         {

                                c[2]++;

                         }

                         else if(a == ')')

                         {

                               if(c[2] > 0)

                                {

                                       ans+= 2;

                                       c[2]--;

                                }

                         }

                  }

                  printf("%d\n", ans);

           }

           return 0;

    }





    • [E] 让我们一起来黑静爷吧

      • 问题描述
      • cjl经常被hxj和zy黑。。已经是家常便饭了。这次,cjl有一个逆袭的机会!他们要玩一个游戏,
        如果cjl赢了就能够让hxj和zy称他为j爷。2333 这个游戏是这样的,给定N个正整数,双方轮流操作,
        每次可以让其中一个值y变成x.1 <= x < y,且在[x+1,y]至少有一个素数.最后谁无法操作即为输.我们让cjl先手.
        (静爷不哭,站起来(哔))

      • 输入
      • 第一行有一个整数T,表示组数。T <= 1000
        接下来有N组数据,每组数据有一个值N,表示接下来有N个值。 N <= 1000
        下一行是N个正整数A[i]. A[i] <= 5000000
      • 输出
      • 对于每组数据,cjl赢的话,输出"Win",否则输出"Lost"
      • 样例输入
      • 2
        1
        5
        2
        3 4
      • 样例输出
      • Win
        Lost
      • 提示
      • 来源
      • zyvas
      先把范围内的素数筛选出来,然后,这就是个n堆石子的组合博弈了。这里要按每个数a[i] ,1--a[i] 里素数的个数来当石子的个数,因为每次取都要至少取掉一个素数。


      #include<stdio.h>
      #include<algorithm>
      #include<math.h>
      #include<iostream>

      using namespace std;

      bool vis[5000010];

      int ans[5000010];

      int num[5000010];

      void get_prime()
      {
      int t=5000000;
      memset(vis,true,sizeof(vis));
      int tot=0;
      for(int i=2;i<=t;i++)
      {
      if(vis[i])
      {
      tot++;
      ans[tot]=i;
      }
      for(int j=1;(j<=tot) && (i*ans[j] <= t);j++)
      {
      vis[i*ans[j]]=false;
      if(i%ans[j]==0)
      break;
      }
      }
      num[0]=0;
      vis[1]=0;
      for(int i=1;i<=t;i++)
      {
      num[i]=num[i-1]+vis[i];
      }
      }

      int main()
      {
      get_prime();
      int t;
      while(~scanf("%d",&t))
      {
      while(t--)
      {
      int n,_xor=0,pos=0,temp,i,a;
      bool flag=0;
      scanf("%d",&n);
      for(i=0;i<n;i++)
      {
      scanf("%d",&a);
      _xor^=num[a];
      if(num[a] > 1)
      flag=1;
      }
      if(!_xor)
      printf("Lost\n");
      else
      {
      if(_xor && flag)
      printf("Win\n");
      else
      printf("Lost\n");
      }
      }
      }
      return 0;
      }




{"id": "cmpl-e759f3d8-78e1-11f0-b2b4-1a85109d8f07", "choices": [{"finish_reason": "stop", "index": 0, "message": {"content": "<think>\nOkay, so I need to figure out how many whole-number divisors there are for the integer given by the expression $ a(2a + b) - 2a^2 + ab $, where $ a $ and $ b $ are different prime numbers greater than 2. Let me start by simplifying the expression step by step.\n\nFirst, let me write down the expression again to make sure I have it right: $ a(2a + b) - 2a^2 + ab $. Let me expand the first term, which is $ a(2a + b) $. If I distribute the $ a $, that becomes $ 2a^2 + ab $. So substituting that back into the original expression, we have:\n\n$ 2a^2 + ab - 2a^2 + ab $.\n\nNow let me combine like terms. The $ 2a^2 $ and $ -2a^2 $ cancel each other out, right? So that leaves me with $ ab + ab $, which is $ 2ab $. So the entire expression simplifies to $ 2ab $. \n\nWait, so the problem is asking for the number of whole-number divisors of $ 2ab $, where $ a $ and $ b $ are different primes greater than 2. Let me confirm that I simplified correctly. Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nExpanding $ a(2a + b) $: $ 2a^2 + ab $. Then subtract $ 2a^2 $, so $ 2a^2 + ab - 2a^2 = ab $. Then add $ ab $, so $ ab + ab = 2ab $. Yes, that seems right. So the expression simplifies to $ 2ab $.\n\nAlright, so now I need to find the number of positive divisors of $ 2ab $. Since $ a $ and $ b $ are primes greater than 2, they are both odd primes. Let me recall that the number of divisors of a number is found by taking its prime factorization, adding one to each of the exponents, and multiplying those together.\n\nSo first, let me write the prime factorization of $ 2ab $. Since 2 is a prime number, and $ a $ and $ b $ are different primes, all three primes are distinct. Therefore, the prime factors of $ 2ab $ are 2, $ a $, and $ b $. Each of these primes has an exponent of 1 in the factorization. So the prime factorization is $ 2^1 \\times a^1 \\times b^1 $.\n\nTo find the number of divisors, I take each exponent (which are all 1s), add 1 to them, and multiply. That would be $ (1 + 1)(1 + 1)(1 + 1) = 2 \\times 2 \\times 2 = 8 $. Therefore, there are 8 positive divisors.\n\nBut let me verify this with an example to make sure I haven't made a mistake. Let me pick specific primes for $ a $ and $ b $. Let's take $ a = 3 $ and $ b = 5 $, which are both primes greater than 2 and different.\n\nCalculating $ 2ab $: $ 2 \\times 3 \\times 5 = 30 $. Now, the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. That's 8 divisors. Yep, that matches the calculation. Let me try another example to be safe. Let me take $ a = 5 $, $ b = 7 $. Then $ 2ab = 2 \\times 5 \\times 7 = 70 $. Divisors of 70: 1, 2, 5, 7, 10, 14, 35, 70. Again, 8 divisors. Okay, so that seems consistent.\n\nBut let me think again if there's any possibility that 2 could be equal to $ a $ or $ b $. However, the problem states that $ a $ and $ b $ are primes greater than 2, so they are odd primes. Therefore, 2 is not among them. Therefore, 2, $ a $, and $ b $ are distinct primes. Therefore, the prime factorization is indeed three distinct primes each to the first power, leading to 2×2×2=8 divisors.\n\nBut let me check if there's a case where maybe $ a $ or $ b $ is 2. But the problem says they are greater than 2, so they can't be. Therefore, my reasoning holds.\n\nTherefore, the number of whole-number divisors is 8. Therefore, the answer is 8, which in boxed form is \\boxed{8}.\n\nWait, but let me just check once more. Suppose someone might think that maybe the original expression simplifies differently? Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nFirst term: $ a(2a + b) = 2a^2 + ab $.\n\nSubtracting $ 2a^2 $: $ 2a^2 + ab - 2a^2 = ab $.\n\nAdding $ ab $: $ ab + ab = 2ab $. Yes, that's correct. So the expression simplifies to 2ab. So no issues there.\n\nAlternatively, maybe someone might misread the original problem? Let me check again. The problem says: \"the integer $ a(2a + b) - 2a^2 + ab $\". So yes, that's how it's written. So the steps are correct.\n\nTherefore, I think my answer is correct. The number of divisors is 8.\n\n**Final Answer**\n\\boxed{8}\n</think>\n\nWe are given an expression involving two distinct prime numbers $ a $ and $ b $, both greater than 2, and asked to find the number of whole-number divisors of the integer:\n\n$$\na(2a + b) - 2a^2 + ab\n$$\n\n---\n\n### Step 1: Simplify the Expression\n\nStart by expanding the first term:\n\n$$\na(2a + b) = 2a^2 + ab\n$$\n\nNow substitute this back into the full expression:\n\n$$\n2a^2 + ab - 2a^2 + ab\n$$\n\nSimplify by combining like terms:\n\n- $ 2a^2 - 2a^2 = 0 $\n- $ ab + ab = 2ab $\n\nSo the entire expression simplifies to:\n\n$$\n2ab\n$$\n\n---\n\n### Step 2: Prime Factorization of $ 2ab $\n\nSince $ a $ and $ b $ are distinct prime numbers greater than 2, and 2 is also a prime, the expression $ 2ab $ is the product of three **distinct** primes:\n\n$$\n2ab = 2^1 \\cdot a^1 \\cdot b^1\n$$\n\n---\n\n### Step 3: Count the Number of Divisors\n\nThe number of positive divisors of a number is determined by taking the product of one more than each exponent in its prime factorization.\n\nHere, the exponents are all 1:\n\n$$\n(1 + 1)(1 + 1)(1 + 1) = 2 \\cdot 2 \\cdot 2 = 8\n$$\n\n---\n\n### Final Answer\n\n$$\n\\boxed{8}\n$$", "role": "assistant", "reasoning_content": ""}, "review": {"gold": "8", "pred": "8", "result": true}}], "created": 1755157209, "model": "Qwen3-32B", "object": "chat.completion", "usage": {"completion_tokens": 1627, "prompt_tokens": 68, "total_tokens": 1695}, "model_spec": {"api_url": "http://0.0.0.0:9009/v1/chat/completions", "model_id": "Qwen3-32B", "api_key": "EMPTY"}, "answer_id": "answer-1a07ae97260436f698e63d4620d7cff0", "subset_name": "default", "raw_input": {"problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json"}, "origin_prompt": {"data": ["Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?\nPlease reason step by step, and put your final answer within \\boxed{}."], "system_prompt": null, "raw_input": {"problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json"}, "index": 0}, "reviewed": true, "review_id": "review-307a3dc16716316d92e62e1f3ae09703", "reviewer_spec": {"metric": ["AveragePass@1"], "reviewer": ["Evaluator"], "revision": ["default"]}, "review_time": 1755194244.6042051} 写一个脚本,将以上字符串格式化为以下json格式 { "id": "cmpl-e759f3d8-78e1-11f0-b2b4-1a85109d8f07", "choices": [ { "finish_reason": "stop", "index": 0, "message": { "content": "<think>\nOkay, so I need to figure out how many whole-number divisors there are for the integer given by the expression $ a(2a + b) - 2a^2 + ab $, where $ a $ and $ b $ are different prime numbers greater than 2. Let me start by simplifying the expression step by step.\n\nFirst, let me write down the expression again to make sure I have it right: $ a(2a + b) - 2a^2 + ab $. Let me expand the first term, which is $ a(2a + b) $. If I distribute the $ a $, that becomes $ 2a^2 + ab $. So substituting that back into the original expression, we have:\n\n$ 2a^2 + ab - 2a^2 + ab $.\n\nNow let me combine like terms. The $ 2a^2 $ and $ -2a^2 $ cancel each other out, right? So that leaves me with $ ab + ab $, which is $ 2ab $. So the entire expression simplifies to $ 2ab $. \n\nWait, so the problem is asking for the number of whole-number divisors of $ 2ab $, where $ a $ and $ b $ are different primes greater than 2. Let me confirm that I simplified correctly. Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nExpanding $ a(2a + b) $: $ 2a^2 + ab $. Then subtract $ 2a^2 $, so $ 2a^2 + ab - 2a^2 = ab $. Then add $ ab $, so $ ab + ab = 2ab $. Yes, that seems right. So the expression simplifies to $ 2ab $.\n\nAlright, so now I need to find the number of positive divisors of $ 2ab $. Since $ a $ and $ b $ are primes greater than 2, they are both odd primes. Let me recall that the number of divisors of a number is found by taking its prime factorization, adding one to each of the exponents, and multiplying those together.\n\nSo first, let me write the prime factorization of $ 2ab $. Since 2 is a prime number, and $ a $ and $ b $ are different primes, all three primes are distinct. Therefore, the prime factors of $ 2ab $ are 2, $ a $, and $ b $. Each of these primes has an exponent of 1 in the factorization. So the prime factorization is $ 2^1 \\times a^1 \\times b^1 $.\n\nTo find the number of divisors, I take each exponent (which are all 1s), add 1 to them, and multiply. That would be $ (1 + 1)(1 + 1)(1 + 1) = 2 \\times 2 \\times 2 = 8 $. Therefore, there are 8 positive divisors.\n\nBut let me verify this with an example to make sure I haven't made a mistake. Let me pick specific primes for $ a $ and $ b $. Let's take $ a = 3 $ and $ b = 5 $, which are both primes greater than 2 and different.\n\nCalculating $ 2ab $: $ 2 \\times 3 \\times 5 = 30 $. Now, the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. That's 8 divisors. Yep, that matches the calculation. Let me try another example to be safe. Let me take $ a = 5 $, $ b = 7 $. Then $ 2ab = 2 \\times 5 \\times 7 = 70 $. Divisors of 70: 1, 2, 5, 7, 10, 14, 35, 70. Again, 8 divisors. Okay, so that seems consistent.\n\nBut let me think again if there's any possibility that 2 could be equal to $ a $ or $ b $. However, the problem states that $ a $ and $ b $ are primes greater than 2, so they are odd primes. Therefore, 2 is not among them. Therefore, 2, $ a $, and $ b $ are distinct primes. Therefore, the prime factorization is indeed three distinct primes each to the first power, leading to 2×2×2=8 divisors.\n\nBut let me check if there's a case where maybe $ a $ or $ b $ is 2. But the problem says they are greater than 2, so they can't be. Therefore, my reasoning holds.\n\nTherefore, the number of whole-number divisors is 8. Therefore, the answer is 8, which in boxed form is \\boxed{8}.\n\nWait, but let me just check once more. Suppose someone might think that maybe the original expression simplifies differently? Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nFirst term: $ a(2a + b) = 2a^2 + ab $.\n\nSubtracting $ 2a^2 $: $ 2a^2 + ab - 2a^2 = ab $.\n\nAdding $ ab $: $ ab + ab = 2ab $. Yes, that's correct. So the expression simplifies to 2ab. So no issues there.\n\nAlternatively, maybe someone might misread the original problem? Let me check again. The problem says: \"the integer $ a(2a + b) - 2a^2 + ab $\". So yes, that's how it's written. So the steps are correct.\n\nTherefore, I think my answer is correct. The number of divisors is 8.\n\n**Final Answer**\n\\boxed{8}\n</think>\n\nWe are given an expression involving two distinct prime numbers $ a $ and $ b $, both greater than 2, and asked to find the number of whole-number divisors of the integer:\n\n$$\na(2a + b) - 2a^2 + ab\n$$\n\n---\n\n### Step 1: Simplify the Expression\n\nStart by expanding the first term:\n\n$$\na(2a + b) = 2a^2 + ab\n$$\n\nNow substitute this back into the full expression:\n\n$$\n2a^2 + ab - 2a^2 + ab\n$$\n\nSimplify by combining like terms:\n\n- $ 2a^2 - 2a^2 = 0 $\n- $ ab + ab = 2ab $\n\nSo the entire expression simplifies to:\n\n$$\n2ab\n$$\n\n---\n\n### Step 2: Prime Factorization of $ 2ab $\n\nSince $ a $ and $ b $ are distinct prime numbers greater than 2, and 2 is also a prime, the expression $ 2ab $ is the product of three **distinct** primes:\n\n$$\n2ab = 2^1 \\cdot a^1 \\cdot b^1\n$$\n\n---\n\n### Step 3: Count the Number of Divisors\n\nThe number of positive divisors of a number is determined by taking the product of one more than each exponent in its prime factorization.\n\nHere, the exponents are all 1:\n\n$$\n(1 + 1)(1 + 1)(1 + 1) = 2 \\cdot 2 \\cdot 2 = 8\n$$\n\n---\n\n### Final Answer\n\n$$\n\\boxed{8}\n$$", "role": "assistant", "reasoning_content": "" }, "review": { "gold": "8", "pred": "8", "result": true } } ], "created": 1755157209, "model": "Qwen3-32B", "object": "chat.completion", "usage": { "completion_tokens": 1627, "prompt_tokens": 68, "total_tokens": 1695 }, "model_spec": { "api_url": "http://0.0.0.0:9009/v1/chat/completions", "model_id": "Qwen3-32B", "api_key": "EMPTY" }, "answer_id": "answer-1a07ae97260436f698e63d4620d7cff0", "subset_name": "default", "raw_input": { "problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json" }, "origin_prompt": { "data": [ "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?\nPlease reason step by step, and put your final answer within \\boxed{}." ], "system_prompt": null, "raw_input": { "problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json" }, "index": 0 }, "reviewed": true, "review_id": "review-307a3dc16716316d92e62e1f3ae09703", "reviewer_spec": { "metric": [ "AveragePass@1" ], "reviewer": [ "Evaluator" ], "revision": [ "default" ] }, "review_time": 1755194244.6042051 }
最新发布
08-17
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值