一、网络模型配置
Yolov5s
# Parameters
nc: 1 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]], # 2
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, C3, [256]], # 4
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]], # 6
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]], # 8
[-1, 3, C3, [1024, False]], # 9
]
# YOLOv5 head
head:
[[-1, 1, Conv, [512, 1, 1]], # 10
[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11
[[-1, 6], 1, Concat, [1]], # 12 cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]], # 14
[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 15
[[-1, 4], 1, Concat, [1]], # 16 cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]], # 18
[[-1, 14], 1, Concat, [1]], # 19 cat head P4
[-1, 3, C3, [512, False]]

文章详细介绍了YOLOv5s和YOLOv8s两种目标检测模型的网络配置,包括参数设置、模型结构和检测层的实现。YOLOv5s和YOLOv8s在backbone和head部分有所不同,涉及卷积、上采样、拼接等操作,用于不同尺度特征的融合和预测。
最低0.47元/天 解锁文章
11万+

被折叠的 条评论
为什么被折叠?



