FRCN-Deeper Depth Prediction with Fully Convolutional Residual Networks

文章:

IEEE 3D Vision 2016的文章 原文

Contribution

First, we introduce a fully convolutional architecture to depth prediction, endowed with novel up-sampling blocks, that allows for dense output maps of higher resolution and at the same time requires fewer parameters and trains on one order of magnitude fewer data than the state of the art, while outperforming all existing methods on standard benchmark datasets. We further propose a more efficient scheme for upconvolutions and combine it with the concept of residual learning [7] to create up projection blocks for the effective upsampling of feature maps. Last, we train the network by optimizing a loss based on the reverse Huber function (berHu) [40] and demonstrate, both theoretically and experimentally, why it is beneficial and better suited for the task at hand.

代码:

官方的并没有给出所有源码,给出了tensorflow和matlab版本的模型以及测试方法https://github.com/iro-cp/FCRN-DepthPrediction

我结合网上资源实现用pytorch实现了论文https://github.com/gentlemanman/fcrn_pytorch

但并没有达到论文中的效果,可以试着调整参数继续训练和优化

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值