pytorch学习笔记《待续》

人工神经网络靠的是正向和反向传播来更新神经元,从而形成一个好的神经系统,本质上,这是一个能让计算机处理和优化的数学模型。而生物神经网络是通过刺激, 产生新的联结, 让信号能够通过新的联结传递而形成反馈。虽然现在的计算机技术越来越高超,不过我们身体里的神经系统经过了数千万年的进化,还是独一无二的, 迄今为止,再复杂,再庞大的人工神经网络系统也不能替代我们的脑袋。——引子

DL,ML,AI三者之间的关系

在这里插入图片描述

Machine Learning(机器学习):一门研究领域,它赋予计算机无需明确编程就能学习的能力。也就是说,机器学习程序不同于传统编程那样,使用if-then语句那样明确地输入到计算机中以便它根据条件执行。在某种意义上,机器学习程序赋予机器根据所接触到的数据进行自我调整的能力。机器学习更像是一种优化算法,如果我们在事先就对它进行了正确的调整,那么它就会在一遍又一遍的尝试和猜测之中不断减少它的错误,以无限逼近于最终的正确结果。而机器学习的基本思路,也就是将现实问题抽象成为一个数学问题,机器通过训练,寻找到解决数学问题的方法,进而解决现实问题。

Deep Learning(深度学习):它通过建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据。 李开复教授在《人工智能》一书中这样解释深度学习:“假设深度学习要处理的信息是“水流”,而处理数据的深度学习网络是一个由管道和阀门组成的巨大水管网络。网络的入口是若干管道开口,网络的出口也是若干管道开口。这个水管网络有许多层,每一层由许多个可以控制水流流向与流量的调节阀。根据不同任务的需要,水管网络的层数、每层的调节阀数量可以有不同的变化组合。对复杂任务来说,调节阀的总数可以成千上万甚至更多。水管网络中,每一层的每个调节阀都通过水管与下一层的所有调节阀连接起来,组成一个从前到后,逐层完全连通的水流系统。”

Artificial Intelligence(人工智能):人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。 按照这个定义,计算器也算人工智能,因为它至少做了“模拟”人在计算方面的智能,并扩展了这个能力(比人算得更快)。机器学习就是用算法解析数据,不断学习,对世界中发生的事做出判断和预测的一项技术。研究人员不会亲手编写软件、确定特殊指令集、然后让程序完成特殊任务;相反,研究人员会用大量数据和算法“训练”机器,让机器自行学会如何执行任务。说白了,机器学习只是人们实现让机器“模拟、延伸和扩展人的智能”的一种较为轻松的方法罢了。它的成功与否取决于我们喂给机器的数据集是否准确且有效。因此,机器学习是大数据技术领域内的一个应用,人们只是借用这个应用,来发展人工智能罢了。机器学习发展了几十年之后,再次遇到了瓶颈期。随着问题场景的更加复杂多变,需要进行判断的条件更加苛刻,人们不得不重新思考一种方式来优化机器学习。深度学习就是带着这个目的被提出的。**机器学习中有一个概念叫“神经网络”,深度学习正是通过优化这个网络来更好的解决通过机器学习难以解决的问题。**它的基本特点,就是试图模仿大脑的神经元之间传递,处理信息的模式,通过不同的“层”来拆分问题,每一层解决问题的一个部分。比如在利用深度学习解决智能驾驶问题中,第一层可能用于识别车辆与道路边缘的距离,第二层用于识别道路标线,第三层用于识别路上的其他车辆等等。

它们三者的关系就像是俄罗斯套娃:AI最大,它的目的是通过让机器模仿人类进而超越人类;ML次之,它是AI的一个分支(也是最重要分支),是让机器模仿人类的一种方法;DL更次之,它是ML的一个分支,它的目的是让机器不借助人工标注,也能自主提取目标特征进而解决问题的一种方法。

Pytorch安装

PyTorch是由Meta AI(Facebook)人工智能研究小组开发的一种基于Lua编写的Torch库的Python实现的深度学习库,目前被广泛应用于学术界和工业界,相较于Tensorflow2.x,PyTorch在API的设计上更加简洁、优雅和易懂。

在cmd/terminal中输入nvidia-smi(Linux和Win命令一样)、使用NVIDIA控制面板和使用任务管理器查看自己是否有NVIDIA的独立显卡及其型号和兼容CUDA版本:

在这里插入图片描述
然后进入pytorch官网:

在这里插入图片描述
选择相应配置后,直接pip安装。(由于CUDA也随着pytorch下载,所以会有2-3G),下载完成后验证:

import torch

print(torch.cuda.is_available())

在这里插入图片描述

相关资料

  1. 官方文档:https://pytorch.org/docs/stable/index.html

  2. 动手学深度学习:https://zh.d2l.ai/chapter_preface/index.html
    在这里插入图片描述

  3. PyTorch学习教程、手册:https://github.com/INTERMT/Awesome-PyTorch-Chinese

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Generalzy

文章对您有帮助,倍感荣幸

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值