小明种苹果

本文介绍了一种用于计算小明种植苹果的最优方案的算法。通过矩阵操作和比较,算法能够找出收益最大化的种植区域,并计算总收益。涉及C++编程、数据结构和算法优化。

试题编号: 201909-1
试题名称: 小明种苹果
时间限制: 2.0s
内存限制: 512.0MB
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
代码:

#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include<iomanip>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;  
const int N = 1001;
int matrix[N][N];
bool cmp(pair<int,int> p1 , pair<int,int> p2){
	if(p1.second != p2.second){
		return p1.second > p2.second;
	}else{
		return p1.first < p2.first;
	}
	
}
int main(){
	int n , m;
	vector<pair<int,int>> vc;
	while(cin >> n >> m){
		memset(matrix , 0 , sizeof(matrix));
		for(int i = 0 ; i < n ; i++){
			for(int j = 0 ; j <= m ; j++){
				cin >> matrix[i][j];
			}
		}
		int sum = 0;
		for(int i = 0 ; i < n ; i++){
			int temp = 0;
			for(int j = 1 ; j <= m ; j++){
				temp += matrix[i][j];
			}
			vc.push_back(make_pair(i + 1 , abs(temp)));
			sum += (matrix[i][0] + temp);
		}
		sort(vc.begin() , vc.end() , cmp);
		cout << sum << " " << vc[0].first << " " << vc[0].second << endl;
		vc.clear();
	}	
    return 0;
}

/* 测试用例 

3 3
73 -8 -6 -4
76 -5 -10 -8
80 -6 -15 0

*/

/* 第二次 

#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<string.h>
#include<fstream>
#include<iostream>
#include<iomanip>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std; 
const int N = 1001;
int matrix[N][N];
int main()
{
	
	int n , m;
	while(cin >> m>> n){
		memset(matrix, 0,sizeof(matrix)); 
		for(int i = 0 ; i < m ; i++){
			for(int j = 0 ; j <= n ; j++){
				cin >> matrix[i][j];
			}
		}
		int rest = 0;
		int maxsum = -1 , index = -1;
		for(int i = 0 ; i < m ; i++){
			int sum = 0;
			for(int j = 1 ; j <= n ; j++){
				sum += matrix[i][j];
			}
			if(abs(sum) > maxsum){
				maxsum = abs(sum);
				index = i + 1; 
			}
			rest += (matrix[i][0] + sum);
		}
		cout << rest << " " << index << " " << maxsum<< endl;
	}
    return 0;
}

*/ 
### CCF CSP 小明种植苹果问题解析 #### 问题描述 小明需要管理一片果园中的苹果树,每棵树上都有一定数量的苹果。为了提高果实质量,他会对部分果树进行疏果操作,即将一些不良苹果摘除。最终目标是统计整个果园中剩余的苹果总数 \( T \),找出疏果最多的那棵树的编号 \( k \) 及其剩余苹果的数量 \( P \)[^1]。 此外,在后续版本的问题中引入了“落果”的概念:如果某棵树上的当前苹果数少于前一棵树扣除疏果后的苹果数,则认为发生了落果现象[^2]。 --- #### 算法设计思路 ##### 数据结构定义 程序可以采用数组来存储每一棵苹果树的相关数据,具体包括: - `count[i]` 表示第 \( i \) 棵树初始的苹果数目; - `remove[i]` 记录第 \( i \) 棵树被疏掉的苹果数目; - `remain[i]` 存储经过疏果处理后第 \( i \) 棵树剩下的苹果数目; - `flag[i]` 判断是否发生过落果事件(布尔型变量),其中 `true` 或者 `false` 来表示是否有落果情况。 对于第二问涉及的落果次数统计,还需要额外维护一个全局变量 `D` ,用于记录总的落果次数。 --- ##### 输入与预处理逻辑 读取输入时需注意以下几点: 1. **边输入边计算**:由于题目要求实时更新统计数据,因此建议在每次接收新数据的同时完成相应的运算。 2. **初始化参数**:设定最大疏果量初值为负无穷大或者非常低的一个数值;同时将总苹果数设为零以便累加求和。 3. **特殊边界条件考虑**:当只有一颗树木时如何单独处理?以及所有树均未经历任何疏果的情况该如何返回合理的结果? --- ##### 主体算法流程 以下是解决此问题的核心伪代码: ```python def process_apples(n, counts, removes): total_remaining = 0 max_removed_index = -1 max_removed_value = float('-inf') previous_count_after_removal = None drop_occurrences = 0 for i in range(n): current_remainder = counts[i] - removes[i] # 更新总体剩余苹果数量 total_remaining += current_remainder # 找到最多疏果的那一棵树及其对应的剩余苹果数 if removes[i] > max_removed_value: max_removed_value = removes[i] max_removed_index = i + 1 # 转换为基于人的索引 (从1开始) # 处理落果判定 if i != 0 and previous_count_after_removal is not None: expected_current_min = previous_count_after_removal - removes[i-1] if current_remainder < expected_current_min: drop_occurrences += 1 # 准备下一轮迭代所需的数据 previous_count_after_removal = current_remainder result_k_p = (max_removed_index, counts[max_removed_index - 1] - removes[max_removed_index - 1]) return total_remaining, result_k_p, drop_occurrences ``` 上述实现涵盖了两个主要功能模块——寻找具有最高疏果率的特定树并报告相应细节,同时也完成了关于潜在落果情形的有效监控。 --- #### 关键点分析 1. **动态调整策略** 需要在遍历过程中不断刷新有关最大疏果信息的状态,并同步累积整体剩余苹果总量。这一步骤确保即使遇到异常状况也能维持正常运作。 2. **复杂度考量** 整个解决方案的时间复杂度接近线性级别 O(N),这是因为只需要一次完整的列表扫描即可获取全部必要指标[^3]。 3. **鲁棒性的增强** 特殊场景下的行为模式应当清晰界定,比如面对极端稀疏分布或完全均匀的情形时的表现应保持一致性和合理性。 --- #### 示例运行案例 假设我们有如下测试样例: - 树木数量 N=4; - 各自原始苹果数分别为 {8,7,6,5}; - 对应执行的疏果动作分别是{2,3,1,4}. 那么按照前述方法论得出结论应该是这样的: - 总共剩下苹果数 T=11; - 发生最频繁疏果的是第四号位置 K=4 ,它保留下来的果实数目 P=1 ; - 并且在整个周期里观察到了两次独立的落果迹象 D=2 . ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值