二分贪心 E - 05

本文介绍了一个经典的算法问题——如何在给定的畜栏中放置牛,使得任意两头牛之间的最小距离最大。通过使用二分查找的方法,在限定条件下找到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stalls are located along a straight line at positions x1,...,xN (0 <= xi <= 1,000,000,000). 

His C (2 <= C <= N) cows don't like this barn layout and become aggressive towards each other once put into a stall. To prevent the cows from hurting each other, FJ want to assign the cows to the stalls, such that the minimum distance between any two of them is as large as possible. What is the largest minimum distance?

Input

* Line 1: Two space-separated integers: N and C 

* Lines 2..N+1: Line i+1 contains an integer stall location, xi

Output

* Line 1: One integer: the largest minimum distance

Sample Input

5 3
1
2
8
4
9

Sample Output

3

Hint

OUTPUT DETAILS: 

FJ can put his 3 cows in the stalls at positions 1, 4 and 8, resulting in a minimum distance of 3. 

Huge input data,scanf is recommended.


           这道题的基本题意为给你n个畜栏、c头牛,把这c头牛放在其中c个畜栏里,让牛与牛之间离得尽可能的远,要求求满足条件的牛与牛之间的最小距离。


源代码如下:

#include<iostream>
#include<algorithm>
#include<stdio.h>
using namespace std;
int main()
{ int n,c,a[100001],i,j,mid,min,max;
  scanf("%d%d",&n,&c);
  for(i=0;i<n;++i)
   scanf("%d",&a[i]);
  sort(a,a+n);
   min=0;
   max=a[n-1];
   while(max-min>1)
   { int m=1;
     mid=(min+max)/2;
     for(i=1,j=0;i<n;++i)
      if(a[i]-a[j]>=mid)
      { ++m;
        j=i;
 }
 if(m>=c)
   min=mid;
 else max=mid;
   }
    printf("%d\n",min);
 } 


         需要注意的是while里的循环条件要用max-min>1,如果用max>min的话,则无限循环没有结果输出。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值