HDU-1005 Number Sequence

本文介绍了一种解决特定数列问题的方法,该数列定义为f(1)=1,f(2)=1,f(n)=(A*f(n-1)+B*f(n-2))mod7,并通过示例展示了如何利用循环和取模运算高效计算f(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Number Sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 191497    Accepted Submission(s): 47885


Problem Description
A number sequence is defined as follows:

f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.

Given A, B, and n, you are to calculate the value of f(n).
 

Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
 

Output
For each test case, print the value of f(n) on a single line.
 

Sample Input
1 1 31 2 100 0 0
 

Sample Output
25
 


解答:两个数相加后对7取模,周期为7*7=49

代码:

#include<iostream>  
#include<queue>
#include<cstdio>  
#include<cstring>  
#include<algorithm> 
#include<vector> 
#include<cmath>  
#include<sstream>
#include<cstdlib>
#include<map>
const int N =1005;
using namespace std;
int main(){
	int	a,b,n,ans[50];
	ans[1] = ans[2] = 1;
	while(scanf("%d%d%d",&a,&b,&n),a!=0||b!=0||n!=0){
		for(int i =3;i<50;i++){
			ans[i] = (a*ans[i-1]+b*ans[i-2])%7;
		}
		cout<<ans[n%49]<<endl;
	}
	return 0;
}

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值