The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12 13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x r-> d-> r->
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
1 2 3
x 4 6
7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
Sample Input
2 3 4 1 5 x 7 6 8
Sample Output
ullddrurdllurdruldr
题解:一个3*3的矩阵,求最少要怎样移动“x”能使矩阵变成 1 2 3 4 5 6 7 8 x。类似于拼图游戏(讨厌又不会玩。。。)
看了很多大佬的博客才磕磕绊绊。。。。还是会的太少太少了。。。
用bfs倒着搜索,记录每种状态,最后判定一下输出就好
代码:
#include<stdio.h>
#include<string.h>
#include<queue>
#include<map>
#include<string>
#include<algorithm>
using namespace std;
int nextt[4][2]= {0,1,1,0,0,-1,-1,0};
map<int,string>lu;//记录路径
map<int,int>f;//标记作用,防止状态重复
struct node
{
string t;
int mp[3][3];//存放矩阵
int x,y;
};
void dfs()
{
queue<node>q;
node st,ed;
int l=1;
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
st.mp[i][j]=l++;//初始状态
st.mp[2][2]=0;//最后一个是X,记为0
st.x=2;
st.y=2;
f[123456780]=1;
q.push(st);
while(!q.empty())
{
st=q.front();
q.pop();
ed=st;
for(int i=0; i<4; i++)
{
int tx=st.x+nextt[i][0];
int ty=st.y+nextt[i][1];
if(tx<0||ty<0||tx>=3||ty>=3)
continue;
for(int j=0; j<3; j++)
for(int k=0; k<3; k++)
ed.mp[j][k]=st.mp[j][k];
swap(ed.mp[st.x][st.y],ed.mp[tx][ty]); //X和别的交换位置
int sum=1;
for(int j=0; j<3; j++)
for(int k=0; k<3; k++)
sum=sum*10+ed.mp[j][k]; //计算此时状态
if(f[sum]==0)
{
f[sum]=1;
ed.x=tx;
ed.y=ty;
if(i==0)
ed.t=st.t+'l'; //反向存路径
else if(i==1)
ed.t=st.t+'u';
else if(i==2)
ed.t=st.t+'r';
else
ed.t=st.t+'d';
q.push(ed);
lu[sum]=ed.t; //记录此状态下的路径
}
}
}
}
int main()
{
dfs();
char s[50];
while(gets(s))
{
int i,l=strlen(s),sum=1;
for(i=0; i<l; i++)
{
if(s[i]>='1'&&s[i]<='9')
sum=sum*10+s[i]-'0';
else if(s[i]=='x')
sum=sum*10;
}
if(f[sum]==0)
printf("unsolvable\n");
else
{
string ss=lu[sum];
for(i=ss.size()-1; i>=0; i--)//逆序输出
printf("%c",ss[i]);
printf("\n");
}
}
return 0;
}