MiniCPM-V 2.6
MiniCPM-V 2.6 是 MiniCPM-V 系列中最新、性能最佳的模型。该模型基于 SigLip-400M 和 Qwen2-7B 构建,共 8B 参数。与 MiniCPM-Llama3-V 2.5 相比,MiniCPM-V 2.6 性能提升显著,并引入了多图和视频理解的新功能。
模型下载
下载需要的模型文件, 下载模型
from modelscope import snapshot_download
model_dir = snapshot_download('OpenBMB/MiniCPM-V-2_6', cache_dir='/root/autodl-tmp', revision='master')
视频理解demo
视频理解
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
from decord import VideoReader, cpu # pip install decord
torch.manual_seed(0)
model_dir = r"D:\codes\python\MiniCPM\minicpm-v-2_6"
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True,
attn_implementation='sdpa',
torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager
model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
MAX_NUM_FRAMES=64 # if cuda OOM set a smaller number
def encode_video(video_path):
def uniform_sample(l, n):
gap = len(l) / n
idxs = [int(i * gap + gap / 2) for i in range(n)]
return [l[i] for i in idxs]
vr = VideoReader(video_path, ctx=cpu(0))
sample_fps = round(vr.get_avg_fps() / 1) # FPS
frame_idx = [i for i in range(0, len(vr), sample_fps)]
if len(frame_idx) > MAX_NUM_FRAMES:
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
frames = vr.get_batch(frame_idx).asnumpy()
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
print('num frames:', len(frames))
return frames
video_path="test_video.mp4"
frames = encode_video(video_path)
question = "这个视频中有什么商品,请用JSON格式输出,商品名为productName,商品数量为num?"
msgs = [
{'role': 'user', 'content': frames + [question]},
]
# Set decode params for video
params = {}
params["use_image_id"] = False
params["max_slice_nums"] = 2 # use 1 if cuda OOM and video resolution > 448*448
answer = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
**params
)
print(answer)