OO’s Sequence
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 569 Accepted Submission(s): 205
Problem Description
OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l<=i<=r) , that there's no j(l<=j<=r,j<>i) satisfy ai mod aj=0,now OO want to know
∑i=1n∑j=inf(i,j) mod (109+7).
Input
There are multiple test cases. Please process till EOF.
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers ai(0<ai<=10000)
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers ai(0<ai<=10000)
Output
For each tests: ouput a line contain a number ans.
Sample Input
5 1 2 3 4 5
Sample Output
23 题意:求对于所有i<=j,数列a[i],a[i+1]...a[j]中不能整除其他所有元素的元素数量的总和。 思路:2015多校赛第一场,比赛中想不出,多校赛的简单题对我等渣渣实在不简单。过后看题解,定义两个数组l[i], r[i],表示第i个数左侧和右侧最接近它且值是a[i]因子的数字的位置。第i个数只能在l[i]+1到r[i]-1区间的包含a[i]的子区间有贡献 ,除了这些区间a[i]都因其因子的存在而没有贡献。贡献值为(i-l[i])*(r[i]-i)。因此问题转为求l[i],r[i]。具体如代码所示,过程中用到二分查找。#include <stdio.h> #include <stdlib.h> #include <algorithm> #include <math.h> #include <string.h> #include <vector> #define MOD 1000000007 using namespace std; int l[100009], r[100009], a[100009]; vector<int> w[10009]; int findr(int k, int n, int i) { int lb=0, ub=n-1; while(ub-lb>1) { int mid=(ub+lb)/2; if(w[i][mid] > k) { ub=mid; } else { lb=mid; } } return w[i][ub]; } int findl(int k, int n, int i) { int lb=0, ub=n+1; while(ub-lb>1) { int mid=(ub+lb)/2; if(w[i][mid] < k) { lb=mid; } else { ub=mid; } } return w[i][lb]; } int main() { int n; while(~scanf("%d", &n)) { for(int i=0; i<10009; i++) { w[i].clear(); w[i].push_back(0); } for(int i=1; i<=n; i++) { scanf("%d", &a[i]); l[i]=0, r[i]=n+1; w[a[i]].push_back(i); } for(int i=0; i<10009; i++) { w[i].push_back(n+1); } long long ans=0; for(int i=1; i<=n; i++) { for(int j=1; j<=sqrt(a[i]); j++) { if(a[i]%j != 0) continue; else { int c=a[i]/j; l[i]=max(l[i], findl(i, w[c].size(), c)); r[i]=min(r[i], findr(i, w[c].size(), c)); c=j; l[i]=max(l[i], findl(i, w[c].size(), c)); r[i]=min(r[i], findr(i, w[c].size(), c)); } } ans+=(long long)(i-l[i])*(r[i]-i); } printf("%lld\n", ans%MOD); } return 0; }